faly

POWER OF SIMPLICITY

TDL Reference Manual

The information contained in this document represents the current view of Tally Solutions Pvt. Ltd., (‘Tally’ in short) on the topics
discussed as of the date of publication. Because Tally must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Tally, and Tally cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. TALLY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of
this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form, by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Tally Solutions Pvt.
Ltd.

Tally may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this
document. Except as expressly provided in any written licence agreement from Tally, the furnishing of this document does not give you
any licence to these patents, trademarks, copyrights, or other intellectual property.

© 2017 Tally Solutions Pvt. Ltd. All rights reserved.

Tally, Tally 9, Tally9, Tally.ERP, Tally.ERP 9, Tally.Server 9, Shoper, Shoper 9, Shoper POS, Shoper HO, Shoper 9 POS, Shoper 9 HO,
TallyDeveloper, Tally Developer, Tally.Developer 9, Tally.NET, Tally Development Environment, Tally Extender, Tally Integrator,
Tally Integrated Network, Tally Service Partner, TallyAcademy & Power of Simplicity are either registered trademarks or trademarks of
Tally Solutions Pvt. Ltd. in India and/or other countries. All other trademarks are properties of their respective owners.

Version: TDL Reference Manual/April 2017

Preface

Tally Definition Language (TDL) is the development of Tally.ERP 9. This allows the programmers to
develop and deploy faster, effective Tally Extensions with ease.

The book, TDL Reference Manual, divided into two sections. First section begins with the
Introduction to TDL and focuses on basic concepts of TDL i.e, TDL Components, Symbols used in
TDL, Dimensions and Formatting, Usage of Variables, Buttons and Keys.

Thereafter the emphasis is on the coverage of core concepts of Objects, Methods and Collections,
Actions and UDF creation. After gaining a reasonable amount of depth and confidence in
understanding the above, the focus of the book progresses towards the application of all covered
topics i.e., the creation of various types of Reports, Printing and Voucher/Invoice customisations.

Second section devoted to a detailed discussion of TDL language enhancements for Tally.ERP 9.
This section describes the new features, Writing Remote Compliant TDL Reports and User Defined
Functions respectively. The What’s new section gives an insight about the enhancements in the
latest Tally.ERP 9 Releases.

This book is for anyone who wants to explore TDL as a development language of Tally and how to
write TDL programs effectively. Absolutely no previous TDL experience is necessary. Even
advanced users will find this book useful, as the changes to TDL are dealt from the developers and
the user's point of view.

You will enjoy reading this book, as it is rich in concepts.

Happy programming folks!

laty

POWER OF SIMPLICITY

Contents

Tally Definition Language — An Introduction
Tally Definition LAnNQUAGE eeeiiiiiiiiiie ettt et e s e ee e ee e e s
Comparison With Other LANQUAGES iiuui ettt e e et e et e e e e e e et e e e e e e eeanas
The TDL Program - At @ GIANCE ... et
TDL Capabilii®S ...uuveeiieiiiiiii ettt e e e e e e et e e e e e e e e e e e e ba————aaaaeeeeaaaaaaanes
TDL FRAIUIMNES .ttt ettt e e sttt e e et e e e e et e e s e et e e snn e e e e e e e e s
TDL Components
Writing @ BasiC TDL Program ...ttt et e e e e e e e e e s snnbbe e e e e e eaaeeeeaannnnnnee
Steps 0 Create @ TDL Program ooi ittt e e et e et e e et e e e taa e e et e e e aa e aeanaaaeen
SPECIfICAtION Of TDL FilES eeeee ettt et e e et e et e e e et e e e e e e e r e e e e e e e nnneeeen
Executing Multiple Files using Include Definition —oouuii i e
LI [0 (=T 7= Lo = S TS UTPRP TP
B = (o T I IR o oo =T 1 o RS T PR
LI I o a1 o o] =T o1 £ USRI
LD 11 Lo TP
1] T = P
1 oo 1= PSP
ACHIONS N TDL oo e e e e e e e e e e
[0 2= B /o 1= PP
OPEIAtOrS N TDL eeeeeee et e e et e et e et e et e e e e e et e et e et e ean e aa e ta e et e eaneeaneenaeanaaen
SPECIAI SYMDOIS ...ttt ettt e e e e e e er e e rean
L7 o 1o 2 PPN
Symbols and Prefixes
Access SpecCifiers/SYmbOol PrefiXeS ...t
GeNEral SYMDOIS oottt e et e e bt e e e e et et e e e e nbeee e e anbreeeeeane
The Usage of @ and @@ ... cveeeeeerimteiee ettt ettt e e e ra bt e e e st et e e e e aabb et e e s aabbeeeeeesbeeeeeaa
Defining a Local FOrmula USING @ - ce-eeueee ettt ettt e e et e et e et e e e e e e e ea e e e e e e aeaneeens
Defining a Global FOrmula uSing @@ «...eeueerueeeeeeee et e et e et e e e et e e e e et e e e e e ata e e e et e e e e e e aaaan
The USage OF # @GN #H ..ooooiii ittt e e e e sttt e e e s nte e e e e e snnteeeeesantaeeesaneeeaaeans
Referencing @ Field USING # ooeee ettt et e et e et ettt e e et e e e e et e e e et e e s eanaeeans
Modifying existing Definitions USING H . ..eeen e e e e e e e
Accessing value from a Variable USING Tleie e
The Usage of $ and $F ..ottt e
AcCesSiNg @ MEthod USING $..ottt e e e e e e e e e et e e e e e e e e e e e aeaannenes
Calling an Internal FUNction USING $& ..coeen i et
Commenting @ Code USING ;, ;; @Nd ™/ oo
Line Continuation Character () ..eeeiiiiiiieiie et e e s e e e e ee e e e e e e e neee

laty

POWER OF SIMPLICITY

Exposing Methods and Creating ProCedUres () ...oooiieeeiiiiiciiieeiee et 34
Reinitialize DefinItioNS () oooeiiiii e 35
Optional DEfiNItIONS (1) .eviiiiiiiiiiie et e et e e e sttt e e e e e sbt e e e e santeeeeeessteeeeeanneeeaesanes 35
Dimensions and Formatting
L8 1] AV 1= = R =T g1 o | SR 39
DIimensional AttrDULES ...t e e e e e e e e e e e e e e e e e e aeeeeaeas 39
SIZING/SIZE ATTIDULES eeeeeeeeeeeeeeee et e e e e et e e e e e e e e e e e e e et ettt e aeeeeeeaeetessbs s e aeseseeeeaaeaaaaaeseeeeeneenes 39
Y o 1ol e Vo X oY B A 1 g o0 {= SRR 41
AlIGNMENE AHIIDULES ccceeeeeee e e et et e e e e e e e e e e e e et e eeee et et eeeeaeesae st s aseseeeaeaaaaaaaaseeeeenennns 42
Some SpecCific AttrDULES oo a e e 46
INACHIVE ...ttt ettt e oo oo h ettt et e e e e e e e e e e b e ae et e et et e aaeee e e s aannenbeeeeeaeeeeaaaaan 46
753 o =R 46
Definitions and Attributes for FOrmatting oooiiiiioii e 47
DEFINItION = BOTUEI ..ttt ettt ettt et e e e oo e ettt e et e e e e e e s e e b e e e e eeeeaeeeeeas 47
DEfiNItioN = SEYIE ..ot e e e e e e e e e e e e e eeeeeeeeeeeeenennennnnnnnnnnn 48
DEFINIEION = COIOT .ottt oottt e e e oo e ettt ettt e e e e e e s e e bbbt reeeeeeaeeeaeas 50
Attributes ‘Background’ and ‘Print BG’ooeeuiii ettt e e e e 50
AHMDULE = FOIMAE ...ttt e e oo e e bbbttt et e e e e e e e e e s bbb e e e et e e e aaeeeaeeannnens 51
Variables, Buttons and Keys
RV =TT 1 o) [OOSR PU PR OTRPP 55
AHEDULES OF @ VAIIADIE ...ttt ettt e e e et et e e e e eab e e e eeeeaan 55
The SCOPE OF @ VAl@DIE ccoeeeeee ettt e et et e e e e e aeb e e e e e enbaaeaaees 57
Modifying the Variable VAIUEcccoooeeuuiieee ettt ettt e et e e e e et e e e e e e e e e e eeaaaanas 59
EXAMPIE = VAlIADIES ... e e e e e e e e e e e et e e e e eeeeenennnnennnnnnnnnn 60
BULIONS @NA KBYS .ottt e ettt e e e ettt e e e e b et e e e e et e e e e annbe e e e e e nreeas 60
AHIIDULES OF BUIIONS/KEY'S ..ttt e e oo oo et e e e e e e e e e e et eeee et eeeeeestntnnns e ae e e eeeeeeaaaaaaaeeaeeaeeees 61
Objects and Collections
10 o] =Tod TP PP PPPPPPPRPN: 63
Tally OBJECE SHUCHUIE ...t e e e et e e e e e e e e e e e e et et eeeeeeeae et e e e e e e aeaaeaas 63
Tally OBJECES TYPEOS ..eeeeeeeie e e ettt e et e e e ettt e e e e et e e e eeeee e et e e e e e eesaaa e eeeeesban e eeeesasaaaeeeeeatanaaaaaes 65
(0] 0] 1=Tor A 0 (= ¢ AR 68
107 0] 11T 170 o 1= SO 69
LB TR e O L=Te o T 70
SOUICES OF COMNECHION ...ttt ettt et oottt e e e e e e e e e s e bbbt eeeeeeeaaeee e s 71
(07 Lo =l 0o [=Tox o o 71
100 =To X1 o To7 - 1[0 o [P PPPPPRRN 73
Report Level ObJect @SSOCIAtON ccccieieieeee et a e e e e e e e e e e e e e e e e eaeeeeeeeeeeeaeeeeenennnnnnnnnn 73
Part Level ObJECt ASSOCIALON cceeeie i e i e e e e e ettt e e e e e e e e ae e e e e e e e e eeaaeeeeeeeeeeeaeassesensarnannan 74
Line Level ObJECt ASSOCIALION ccceuiieeee ettt ettt e e e e e e e e e e e et e e e en e e nneeeen 76
Field Level ObJECt ASSOCIAtON cceeeeieee eeeeeastessaaaranananaans 77

laty

POWER OF SIMPLICITY

11 1 g To o £ TP PP TP TSP 77
TYPES OF MEINOUS ...ttt e ettt e e e e et taa e e e ettt b e e e e eetaa e e e aeeaban e eaaees 77
ACCESSING MEINOUS ...ttt e e e e e e e e e e e e e e et e e e e et e ettt eeae et et et e e aeeeaeaeaaaaaaaaeeeeeraeeae 77

10711 1=Tex (o] I @F=T o =1 o111 1= SR 80
BasiC CAPabIilitI©S ... ettt e e e e e e e e e e aeeeeeeeeeenenennenennnnnnnnnn 80
AAVANCEA CaPADIIHIES ccceeeeeeee ettt et e et e e e e e e et e e e e e e et e e e e e et e eaeeaar e aaearaa, 87

Actions in TDL

Categories Of ACHIONS .o e e e e e e e e e e e e st b e e e eeeeaae e e e e b rrreaeaaes 93
ACHON ASSOCIAHON ..o e e et e et e e e ettt e e e e e e e ta b e e e e e e eaa e e eeeeaaaa e eeeearaneeeeearr e aaeearnan 94

(07e] 00T o o) a1=TaY o) Vo1 1] o 1= SRR SRPP 96

(] Lo] o X= 1 I o2 o) =SSR 97
Yo/ g =Y o T PSPPI 97
ACHON = MOGIify OBJECT ... e et et e e e e e e e e e et e et e ettt e et e e e e e e e e aaaaaaaaeeaaraaaaa 99
ACHON - BIOWSE URL ...ttt ettt e et e e et e e e e e e et e e e e e e eetaa e e e e eesaaaneaeeeesannaeeaaes 100
ACHONS - Create @nd Al oeeeeeeeeee et e e e e e e e e e e e e e e e e e e ettt et eeeeae e e e e st a e e e e e aaaaaaaaaaaaaaana 101
Actions - Create Collection, Display Collection and Alter COllection —.............cccceuuueiieiieiiiiie e e 104

ODbjeCt SPECIfIC ACHONS oot e e e e e e e e e e s e aeeeeeeaeeeaennnnrnreees 106
Menu Actions — Menu Up, Menu Down, MEnU REJECE eeeeeuueeeeieaaaaaae e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeas 106
Form Actions - Form Accept, Form Reject, FOImM ENA uuuuuuuuuuuiiiiieieeeeeeeeeeeeeeeeee e e eeeeeeevaanesaannnns 106
Part Actions — Part Home, Part End, Part PG UD oooe oo e e e e e e e e eeeeeeeeeaeenaneas 107
Line Actions - Explode, Display Object, AIter OBJECT ouuuuuuuuiuiiiiieie e e e e e e e e e e e e e e ee e aeeaaanans 108
Field Actions - Field Copy, Field Paste, Field Erase, Calculator —................ccveeeeeeieiiiiieeeeeeiiieeee e e 109

User Defined Fields

VAt 1S U 2 ettt ettt e e e e e e e e e e eeaaaeeeeeeeeeeeeeeraearararaaa 111
Cre@ting @ UDF ... et e ee et ee e e et ntnnnn e e e e e e e eeaenn 111
Storing USer INPUES iN The UDF ueeeieceie e e e e e e e ettt s e s e s e e e e e e e e aaaaaaaeeeeeeeneees 112
Retrieving the value of UDF from an ODBJECE cooiiiiieeeeeeeee eeeeeeenenees 112

Classification Of UDF'S ..ottt e et e e e e ettt e e e st e e e e sneeeeeeanneeeeeeans 112
SIMPIE UDFottt e e et e e e e e e e et e e e e e e e st e e e e eeeaaa e eeeeeattseeesessaneaaeeeenes 112
AQGGregate UDF ...t e oo oo e e e e e e et e e e e et e ettt et ettt tentn b e e e e e e e e aeaaaaaeaeaaaaaae 114

Reports, Printing and Validation Controls

LT oL 1 €= 119
LI Tz Tl =] o Lo g £ O 119
Hierarchical Report (Drill dOWN REPOM) ...coeeeee oo e e e e e e e e e e e ae e e e e e e eeeeeeeeeeeeeeeennnnns 124
COIUMN BASEA REPOIMS ..ot e et e e e ettt e e e e e e e e e e e e e e e tat e e e e e s eetaaeeeeesaattseeeeesaanaaeaees 127

L 101 o O PP PP UR TSP 139
Menu Action — Print/Print CONECHON uuueieeieeeie e e e e e et ee e e e e et e e e e e e e e aate s e e e e entaa e e e e eeanennns 140
BUtton ACHION — PrINE REOPOIT eeeeeieee ettt e e et e e et e e e e e e e et e e e e e e e aate s e e e e easaeeeeeeensanns 140
PAQE BIrEAKS ...coeoeeeeeeeeeeee et e e e e e ettt te et e ——————————————————_aaeseeeeeaeaaaetererereererrrarar——————— 141
Frequently Used Attributes and FUNCHONS couuueeiieeieitiee e et e e e e e e s e e e e et e e e e e earaans 144

laty

POWER OF SIMPLICITY

Validation @nd CONMIOIS ...ciiiiiiiiiie et e e e st e e e s ettt e e e s et e e e e anneeeeeannneeeas 146
Field Level Attribute - ValIdAtecccieeeeiiiii e e ettt e e e e e e e e e e et s e e e e e et e e e e e eaaraaas 146
Field Level Attribute — UNIQUE cccoeeeeeteee ettt e e e e e e e e e e e e e e e e e e st e e e e eeenananns 147
Field Level ATtrIDULE — NOHEY et e s e e s e e e e e e e e e e e e e aeeeeeeeeeeeeeeeennanennnnns 147
Field Level AftrIDULE = CONIIOI eeeieie i e e e e e ettt e e s e e e e e e e e e e e e e eaeaaaaeeeeeeeeesaenssrnrnnns 148
Form Level ATtrIDULE - CONTIOI uuee e et e e ettt e e e e e et e e e e e e e e e e e e eata e e e eeeearanas 148
Menu Level AfIIDULE - CONIIOI eeeeie e e e s e e e e e e e e e e e e e e e aeaeaaeeeeeeeessaenasrnrnans 149
Report Level AHtrIbULE - FAMUIY ccoe oo e aeeeeeeeeeeeeeennnnnnnnnnnnn 149

Voucher and Invoice Customisation ... 151

Classification Of VOUCNEIS eiieiiiiiiiiiiee ettt e e e e e e e e s e aeeeeeeaeeeeennnneneeees 151
ACCOUNEING VOUCHEIS ..ot e e e e e e e e e e e e e e e et et e e ee e e et aeeaeentn e aeaeeeeeeeaeaaaaeeeeeneees 151
INVENTOIY VOUCKHEIS ccooieeeeeeeeeeee et e e e e e e e e e e e e e e e e e et et e ettt e e e et e te et e e e aeseeaeaaaaaaaaaeeeenneees 152
Accounting-Cum-INVENTOrY VOUCHEIS uuuuueaeaaae e e e e ettt e e e e e e e e e e e e aeaeaees 152

The Structure of @ VOUChEr ODJECTE ..oveiiiiiiiieeecc e e e e e e e 152

L1013 (o] 131 E7= o) o 1P 154
VOUCHE! CUSTOMISALION ...vvee i e eseeieee e e e et e e e et e e e e e ettt e e e e e e ta e e e e e e aeaa e e e e eeaann e eaeeeastneeeeensnnnnes 154
INVOICE CUSIOMISALION eeieeeeeeeeeeetett ee et et eeeeeeeeeeeeetessssnsns e aeaeseeaeaaaaeaaaeeeeeenenes 162

Writing Remote Compliant TDL Reports

Client/Server Architecture — AN OVEIVIEW oiiiiiiiiiiiie e 176
Tally Client/Server Architecture using Tally Software Servicescccccoiieviiiiiiiiiccee e 176
L A = 1= 4= R 176
TAIY.ERP 9 SEIVEI ..ottt e et e e e ettt e e e e e e et e e e e e e aa it e e e e ee et e eaeeeastneeeeeeebananas 177
TAlY.ERP 9 ClIENE ...t e et eee e s asbs b e a e eeeeeaens 177
Setting up Tally.NET Server for REMOE ACCESS ...coiiiiiiiiiiiiiie e 178
Setting up the CHENt Tally ..o e e e e 179
TDL — In a Client/Server ENVIFONMENT ...ttt et e e s e e e e e e s nnee s 180
TDL Enhancements for REMOE eeiiiiii e e 181
(0o =Tt (oY I T g T= g Te= =Y 1 181
RepOort LeVel ENRANCEOMENLS uueeeeeeeeee e e et e et e e e e e e e e e e e e e et e e e e e eeta e e eeeenranns 184
FUNCHON 0N REQUESE ... ettt ettt e e e e e e e e e e e e e e eeeaeeeeeeeeeaeeeesnnnsnnnnnnnn 188
ACHION ENNANCEMENES ...eeiiiiii ittt ettt et e e e e e e e e ettt et e e e e e e e e e ea s nnasbeeeeeeaeaaeeeaaaannnnne 189
Writing Remote Compliant TDL REPOMS .oooiiiiiiiii e e e e e e e 191
Fetching the SiNGlE OBJECEo e e e e e e e e e e e e e e eeeeeeeeeeaeenennennnnnnnn 191
Repeating Lines over @ COIIECHION uuuiieeieeiee et e e e e e e e e e e e e et bee s e e e e e et e e e e e e enbaans 192
Using the same Collection in more than one REPOI cooii i i i i e 194

General and Collection Enhancements

Definition, Attribute and Modifier ENhancements oooooiiiiiii i 195
ALrbULE ENNANCEMENES coiiiiieeeeeeeeeee et et ettt e e ee e e ae e st st aeaeeeeeaaaaaaaaaeeeenenes 195
Y Lot [T=T g g ez e Le=Y g 1= £ £ P 200
Behavioral change in System Definitions —ooueveiiiiiiieieee e ee ee e eae e, 203

laty

POWER OF SIMPLICITY

Partial AMtrDULE SUDPOIT eeeeeeeeeeeee ettt e e e et e e e e et e e e e e e et e e e e eeeaaa e eessanta e eeseeraaanns 203
Change in usage of ‘BLANK' Keyword in Menu [{ems —coooieiiiiiieeieeee e a e 203
Enhanced Special SYMDOIS ..o e e e 203
Multi — line commenting in TDL source code USiNG /* @Nd ¥/ueuuuuuuuaaaaa e e e e e e eeeeeeeeeeenenes 203
Extension of modifying definitions USING # ooeiiiii ee e aae 204
™ (Reinitialize) Definition MOGIMIEr ovee e e e e e e e e e e et e et e e e e et e e e ee e eeeennnnnnn e e e es 204
Method Formula Syntax with Relative Object Specificationcccccoiiiiiiiiii e, 204
Enhancements - Object ASSOCIAtION oiiiiiiiii e 206
Report Level ObJect ASSOCIAHON cccieiei ettt a e e e e e e e e e e e e e e e e e e aeaeaeeeeeeeeeeeeanennnnns 206
Part Level ObJECt ASSOCIAtON ieeeie i e e e e e e e e et s e e s e e e e e e e e e e e e e e aaeaeaeeeeeeeeessaesssrnrnans 207
Line Level ObJECt ASSOCIALIONciieie e e ee e e ettt e e e e s e s e e e e e e e e e e e e e aeaeaeeeeeeeeeeeeenanennnnns 208
Field Level ObJect ASSOCIAtON c.ccccieeeeeee et eeeeeaesessnanranananan 209
Enhancements - Object Access via Interface Object ... 210
Identifying Part and Line Interface object with ‘ACCESS NAME’™ oevvuiuiuuiiiiiiieieie e e e e e e e e eeee e eeeeeaenaans 210
1Y [T L= =3 - o o T 210
T Tod (= =T U] o oo AR T o 1 I | S 212
DUring the FUNCHON Call ccoeeeeeiie ettt e e e et e e e e e et e e e e e e et eeeeeeaab e e eeeernaanes 212
In the language syntax for Nesting fOrmMuUIAs ooooi i i 213
AS @ MathematiCal OPEIrator —.............ooeuuuiiieeieeieee ettt e e e e ettt e e e e et e e e e e e e st e e e e e sett e e eeeeataaeens 213
ACtiON ENNANCEMENTS ...ttt e e e e et e e e e e e e e e e e e e nbareeeeaaaeeas 214
ENnhancements in K@Y ACHONS uuueeeieie i e e e e e e ettt e s e e e e s e e e e e e e e aaeaeaaeeeeeeeeesaesssrnrnans 214
INEW ACHIONS .ot e e e e e e e oo e e e e e e e e e e e e ee ettt teee et eaeeeeneesann e e e e aeeeeeeeeeeeeeeeeeeeaeenennnnnnnnnnrns 215
Events iNtrodUCEA ..o e 222
EVENE — ON FOIM ACCEDE ..ottt e e et e e e e et e e e e e e e e e e e e e e st e e eeesaab e eeeeernaanes 222
EVENE — ON FOCUS .o oo e oo e oottt ettt ettt et s et e e e e e e e e e e e e e eeeeaeeeeeeeeeaeeesnnnnnnnnnnnnn 222
User Defined FUNCHON ..o et e e e e e e e 223
NEW FUNCHONS ottt e et e e e e e e e s ettt et e e e e e e e e e e e annbenneeeeeaaeans 223
Function - $SISODJECIBEIONGSTO ...ttt e e e e e e e e e e e e e e e e eeeeeeeeeeeeanebnnaaas 223
Function - $ENUMLINESINSCOPE ... e e e e e e e e e e e e e e e e e e aeeeeeeeeeeeeeenaanennnnns 224
Yo (g XY D T =Y o =T o =TSRSS 224
Function - $$ISCOIISICODJCRANGEA ceieieee eeeeeeeeeaeennnnas 225
FUNCHION = SFCONSICOD] ..oeeeeeiee ettt et e e e ettt e e s et et e e s sta e e e s anssaeee e s nsseeeaeanssseeeesannssenaean 225
Enhanced Collection CapabilitiesS ..o 226
AQgregation and REPOMING oee et e oo e e e e e e e e et et et teeeaeaeeaeeata s e e e e e e e e e e eaaaaaaaaeaaanes 226
The Summary Collection is available through Tally ODBC INterfaceccccceeeeeeeerieieeeeeeiiieeeeeeeeiinnn. 238
HTTP XML Collection (GET and POST with and without Object Specification) —............ccccceeveeeiueuennnnnnn. 239
USAQE AS TADIES ...ttt et e e e e e e e e et e e e e e et e e e ae ittt aaeae s 245
Dynamic Object support for HTTP-XML Information Interchangec.cccooeeeiiiiiiiiiiiiieeieee 249

Collection Capabilities for REMOLING ...coooiiiiiiiii e 251

laty

POWER OF SIMPLICITY

User Defined Functions

FUNCLIONS — [N GENEIAl ..ottt e e e e e e e e e e e e nnnneeeeaeaeeeeeannas 253
FUNCHIONS — 1N TDL ettt ettt e e et e e e e e e e ettt e e ee e e e e e e e s e e nnnneeeeaaaeeesaaanns 254
Function — BUilding BIOCKS ..oeeeieieeeiie e e e e e e e e e es 254
I = (o I =] o S P 255
ProCeAUIAl BIOCK —oeeeeeeeeeiete et e et et e e et e e e e e e e e et et ettt et ae et e s ts et ee e e eeeaeeeaaaaeaaeeeeeeeeeensessrnnrnnnnnnan 257
Valid Statements inside @ FUNCHON ... e e e e e 258
Programming CONSHrUCES IN FUNCHON oooe i eeeeeeeeaaeennnnas 258
ACtions USEd iN @ TDL FUNCHON coueueueieiieteeaeeeaaeseseeeeeeeaeeeeeeeeeeeeaeesesteestasesssnnnnn s aaaaaaeaaaaaaaeseneees 267
107= 11119 To 1= T8 0] Tox 7o) o 1RSSR 278
USING the ACHON ‘CALL’ ...ttt et et e e e e aea e st s et e e e e eeeaeas 278
Using the SYMDBOI Prefix ‘B8 oo e e e e e e e e e e et ettt et eee e et eeaeteannn e e e e e e e e e eeaeaaaeeeeeees 278
Function Execution — Object CONTEXE eviiiiiiiii i e e e e e e e 279
=T [O o)=Ll 0o 1 (=Y S 279
Parameter EValuation CONIEXE ccccieieieie e e e e e e ettt e s e e s e e e e e s e e e e e e e aaaeaaaaeeeeeeeessaesssrnrnans 279
Return Value EVAIUGLION coeeuui et e et s e e et e e e e e et e e e e e e et e e e e e eaat e e e eeeannanes 279
What’s New in Release 5.5.2
Language Enhancements in Procedures (TDL) ... 283
ACHON — BIOWSE URL ...ttt e e et e e e e e e e e e e e e e ee s e e e e eesaaaneaeeensnanaeeaaes 283
FUNCHON — SYSINTO oottt ettt ettt e e e e e e e e eeeaaaeeaeaeeeeeeeaesessssnsnnnnnnan 283
AHIDULE — DALA SOUICE ... eeeeeiee ettt e et e e e e et e e e e e e e e et e e e e e e eesaa e eeeeesasaneaeeeesnanaeeaaes 283
What’s New in Release 5.4.9
Definition — RUIE S ...t e e e e e e e e s e et er e e e e e e e e e e e e e nnenaeereeaaeeas 287
F Y o0 (=Rl === 4L @ o PP 287
AHIDULE — WAIK QN .o e e e e e e e e e e e e e e e et e et e et et e et e e et e saesstanssa i anaeaeeeeeanaaaanaeeeeeneees 287
Y1 o0 (=R VL= PR 288
AHIDULE — AQQE RUIE ...t e e e et e e e e e e et e e e e e e aat e e e e eesaaaneaessrsnanaeaaees 289
N o0 (Rl Y L= Y=Y AP 289
AHIDULE — INBIME SEI .oiee e e s e e e e e e e e e e e e et ettt et e eeeeeeaeeaeeatasnss s aeaeeeaaaeaaaaeeeaeeenene 290
AHIDULE — NGME MAD ...t e oo e e e e e e e e oo ettt et et et et eeeeata e e e e e e e e e eeaaaaaaaaeeeaaaes 290
FUNction — EVAIUGIERUIESEL uneieieie i ee ettt e e s e s e s e s e e e e e e e aeaeaaeeeeeeeesaaennnrnnnnns 290
Definition — NAME SEL ..o e et e e e e st e e e e e et e e e e et e e e e enae e e e e e e 292
ARrIDULE — LiSt INGIME/LISE oeeeeeeeeeeeeeee et e et et e e e e e e e e e e e e et ettt aeeeeeaesass st st aeseeeeeeeaaaaaeeaeeeeenes 293
FUNCion — NGMEGEIVAIUE coueiee ettt e e e e e e et e e e e e e e e e e e e e aab e e e e eerananas 293
Data Type — Flag Set .o e e e e e e e s e e e e e e e e e e e raaaaaaas 294
FUNCHION — FIAQGEIVAIUE ...t ettt e e e e et e e e e e e et e e e e e e aab e e e e eeraaanes 294
FUNCHON — FIAGSEIOR ...ttt e e e e e e e e e e e e e e eeeeeeeeeeeeeaeennnnsnnnnnnnn 294
FUNCHON — FIAGSEIAND ...t e e e e e e et e e e e e et e e e e e e e st e e e e e eaab e eeeeernnanes 295
FUNCHON — FIAGSISAIITIUE ... ettt e e e e e e e e e e e e e e e e e eeeeeeeeeeanennnnennnnnnan 295
Function — FIagSISAITIUEFIOMLEVE! cuuuiieeieeiiee et e e e e e e e e e e e e e e e e e e et e e e e e e earaans 296

Vi

laty

POWER OF SIMPLICITY

FUNCEON — FIAGSISANYTIUE ...vveeeeeeeeeee e e e et e e e e e e ettt e e e e s e e e eeeeaaaeaaaaeeeeeeeessansessnrnnns 296
Function — FIagSISANY TIUEFIOMLEVE! ccoeii eeeeeeeeeaeennnnas 297
FUNCEON — FIAGSCOUNT eeveseeeee et et e e e e et e e e ettt e e e e e e e e e eaaaaeeaeaeeeeeeeessesssnnssnnnanas 298
Function — FIagSCOUNTFIOMLEVE! cci eeeeeeeeeeeeeanennnnas 298
Function — FIAQGEIDESCIIPHON cccceieiee eeeeeaesessnaarnnananan 299
Function — FIaQSLIStDESCIIDHION ciieieieee e ettt e aeeeeeeeeeeeeeennnnennnnns 299
Function — FlagsListDesCriptionFromLEVE! coeveeeeeeeieiiieicieeeeee e e e e e e e e e e e e e e aeeeaeaeeeee e e eeeaaeraraans 300
FUNCHON — ASFIAQSEE ...ttt et e e e e e e e e e e e e e e e e aeaeeeeeeeeeeennennennnnnnnn 301
Data Type — NUM Sl e e e e e e e e e s e e ar e e e e eae e e s e e s snbareeeeeaaeeas 301
FUNCION — NUMGEIVAIUE ...ttt e e e e e e e e et e e e e e e et e e e e e e aa b e e e eeernaanns 301
FUNCHON — ASNUMSEL ...ttt ettt e oo e ettt ettt e e e e e e e e e eeaaaeeaeaeeeeeeeaesssssansnnnnnnan 302
L0 1 1=l =1 o] g = T o= o 4 1= o -SSP 302
AHIIDULE — MAX oottt et e ettt e e e e e e ae b e eeeaeeesa e eaeeeetaa e eeeeassannaeeeeesnnnaaeeensnnnaaaane 302
What’s New in Release 5.4.8
Language Enhancements in Primitives (TDL) ..ooooiiiiiiiiii et 303
FUNCHON = ISANYEMPLY .ottt et e et e ettt e e e e e e e e e eeaaaeeaeaeeeeeeeaesessrsnssnnnnnan 303
Language Enhancements in Procedural (TDL) ..o 303
Language Enhancements in Query (ColleCtioNS) ooiiiiiiiiiiiiie e 303
CONAIONAI WAIKEX cceeie e eee et et et e e e eeasa e st st et e e aneeeeeeeeas 303
(@ =Tl g o= T Ter= g 1= £ £ PP 304
Enhancements in Customisation using Productivity Suiteccccccciiiiiiiiiiii e, 304
What’s New in Release 5.3.8
Action — Format EXCel Sheet ..o 305
What’s New in Release 5.3
Attribute — Confirm Text/QUErY TeXt ... e e 307
ACLION — EXEC EXCEI MACIO ...ttt ettt et e e e e e e e e e reeeaeaeeas 307
What’s New in Release 5.2
Column-wise repeat of data over a collection ... 309
Function — TPICOIUMNODBJECE ... e e e e e e e e e e e e e e e e e e eeeeeeeeeeennanennnnas 309
What’s New in Release 5.0
Customisation using Productivity SUItES cooiiiiiiii e 311
Other Language ENhanCEeMENTS oooiiiiiiiiii et e ettt e e e st e e e s st ee e e s annaeeeeans 322
What’s New in Release 4.8
Data Importing ENhanCemMENts ...t 329
A=Y o1 30 [T (oo (U o= o U PPPURPTTRR 336
Y1 1o) I =Yg =T 7= 0 1Y o] £ 341
FUNCiON ENhanCemMents ..ottt e e e e e e e e e e e e eaeeeeeaanas 347
New Objects and Collection Attributes to support Banking ccoeeiiiiiiiii e 348
Miscellaneous ENhanCemMENTS cccoiiiiiieeeeiee e e e r e e e e e e e e e e e e raneeae s 350

Vii

laty

POWER OF SIMPLICITY

What’s New in Release 4.7

Developer Mode ENhanCements ..o e e e e e e 353

Event ‘NatLangQuery’ INtrodUCEAd couiiiiiiii et 357

A | U A 1 SR 360

Columnar Capability in EQit MOAE ... 366

New data types INTrOAUCEA ... e e e e e e e eeeeaeeas 367
What’s New in Release 4.61

61011V D= = T I o T=T RS 0 o] o] o (S 389
What’s New in Release 4.6

COM DLL SUPPOITIN TDL iiiiiiee ittt iee ettt ettt e e e sttt e e e sttt e e e e ettt e e e e snbaeeeeesnnteeeeesareeeeeans 393

(DY =TT 1T g /o To = SRS 400
What’s New in Release 4.5

[P= V{04 4 T 0] o o1 1] o SRS 417

Y1 To) I =Yg =T 7= 0 1Y o] £ PR 422
What’s New in Release 3.62

Multiple Orientation Support for Printing eeeiiiiiii e 425
What’s New in Release 3.61

ACLION ENNANCEMENTS ..ottt e et e et e e e e e e e e e e nbaeeeeeaaaeeas 427

FUNCLion ENhanCEMENTS .ot e e e e e e e e s e 428
What’s New in Release 3.6

1070] 1= i o] g T =1 0] F=T g ToT=Y 0 4 T=T 01 £ SR RSPRRI 431

AcCtioN ENNanCemMENTS .o e e e e e 432

Platform Functions and Variables ... e 433
What’s New in Release 3.0

1076]11=Tx o] g T =1 0] o F=T g V71 0 4 1= o1 £ PRSPPI 439

Image Printing Capabilities ... 444

Enhanced Columnar Capability oooiiiiiiii e 448

Persisting Variables at System Scope in a User Specified Filecoooiiiiiiiiii e, 458

NeW Events INtrodUCE ... e e e e e e e e e e e e e e e e e e e rreeae s 462

Enhancement — Programmable Configuration ... 466

Optional Default TDL LOAAING ..uvviiiiiiiiie ettt e e e e e e e e e e ae e e e eaeeeeeeeeseneeees 467

Refresh Issues in context of User Defined Function Evaluationccccciiiiie 468
What’s New in Release 2.0

TDL Procedural ENhanCEMENTS eeiiiiiiiiieiie et e e e e e e 477

Variable Framework ENhanCemeNntsS ooooiiiiiiiieeee e e e e e e 499

Event Framework Enhancements ... e 513

AcCtioN ENhanCemMENS .o e e e e 515

viii

laty

POWER OF SIMPLICITY

TDL Enhancements for REMOLING ..oooiiiiiiiiii i e e e e s e e e e e e e e e e e aans 517
Default TDL ChangEs ..ottt e e e e e bt e e e e b bt e e e e aa e e e e e e s be e e e e ennee 523
What’s New in Release 1.8
Invoking Actions on Event Occurrence - with System and Printing Events Introduced 533
(070] 11 Tox 1o o TN =1 o] g F= T Tot=T o 41T o | - 536
Evaluating expressions by Changing the Object Context with $$ReqOwner Introduced 557
Variable Framework with Compound Variables Introducedcccooiiiiiiiiiii e, 573
Licensing Binding MeChaniSIM ...t 632
What’s New in Release 1.61
Narrowing Table SEAICN eeeiiiiiiie e e e e e e e e e e e e e e e e e e s e eeeaaeeas 639
What’s New in Release 1.6
General ENNANCEMENTS ..ottt e et e e e sttt e e e e ebt e e e e s nbaeeeeesnteeeeesaraeeeeeans 641
Collection ENNANCEMENTS eeiiiiiiiiie et e e e ettt e e e st e e e e snteeeeeesreeeaeeens 648
User Defined Functions ENhanCemMENTS uuiiiiiiiiiie e e e 657
NEW FUNCHONS ettt e et e e e e e e e e ettt e et e e e e e e e e e e annbenaeeeeeaaeeas 661
What’s New in Release 1.52
Collection Enhancements - Attribute ‘Data Source’ enhancedcccooiiiiiiiii e, 665
Enhancements in User Defined FUNCLIONS oooiiiiiiii i 666
NEW FUNCHONS ettt e e e e e e s st e e et e e e e e e e e e aaabrnreeeeeeaeeas 670
https URL sSUppOrt in Tally ..ot e e e e e e e e 671
What’s New in Release 1.5
1076]11=Tx o] g T =1 o] F=T g V71 0 4 1= o1 £ RO USRTPRR 673
List Variables INtrodUCEA ... e e e e e e e e e e e e ereaae s 676
DYNAMIC ACHIONS oo e e e e e e e e e e e e e e e e e e et et e e e e e ——————————————————————— 683
NEW FUNCHONS et e e e e e e s st ettt e e e e e e e e e aaab e e teeeeeeaeeas 684
New ALrDULE — TrIGQEr EX oo e e e e e e e e 687
I Lo 1T 1 PSP 688
Tally Command Line Parametersoeeiiiiiiiiii ittt ee e e e e e e e e s rar e e e e e aaeeeeaaes 689
Appendix

Section I

TDL - The Development Language of
Tally.ERP 9

Tty

POWER OF SIMPLICITY

Tally Definition Language — An Introduction

Introduction

Tally Solutions has been in the business of providing complete business solutions for over 20
years to MSME (Micro, Small and Medium Enterprise) and to a large extent to LE (Large
Enterprise) businesses. With over 3 million users in over 100 countries, Tally, the flagship
product, continues to be the preferred IT solution for a majority of businesses every year.

Tally, the flagship product (which started as a simple bookkeeping system, 20 years ago), is
today a comprehensive, integrated solution — covering several business aspects of an enterprise.
These include Accounting, Finance Management, Receivables/Payables, Inventory Accounting,
Inventory Management, BoM-based manufacturing inventory, multi-location/multi-currency/multi-
unit handling, Budgets and Controls, Cost and Profit Centres, Job Costing, POS, Group Company
consolidations, Statutory Taxes (Excise, VAT, CST, TDS, TCS, FBT, etc), Payroll Accounting, and
other major and minor capabilities. It has served as an ERP for small enterprises over the past 12
years.

With the introduction of Remote Access, Remote Authentication, Support Centre, Central
Administration and Account Management inherently supported in the product, it can be formally
labelled as Tally.ERP 9. With this capability, it is possible that the owner or an authorized user will
be able to access all the reports and information from a remote location. With each forthcoming
release subsequent to TallyERP 9 Release 3, additional capabilities will be delivered to cater to
large business enterprises. The major functional areas in Tally are:

Order to Payment (Purchase Processes)

Simple (Cash Purchase) to Advanced Purchase Processes - including Ordering, Receipting,
Rejections, Discounts, etc.

Order to Receipt (Sales Processes)

Simple (Cash Sales) to Advanced Sales Processes - including Orders Received, Delivery,
Invoicing, Rejections and Receipting, POS Invoicing at Retail.

Material to Material (Manufacturing Processes)

Simple to Multi-step material transformations, Discrete and Process Industry cycles, Work in
progress and valuations.

Payroll

Simple to Complex Payrolls — including working with different Units of Measures (e.g., Job rates),
Statutory compliances, their specifications and usage.

MIS
A complete set of reports for Business requirements are as follows:

Financial, Inventory, MIS & Analysis, Budgeting & Controls with advanced classification and
filtering techniques, Group companies and multiple consolidation views, Cross-Period Reporting,

Tty

TDL - Introduction POWER OF SIMPLICITY

Forex handling, Bank Reconciliation, etc. There is also an ‘Export’ option to port data into other
applications (e.g., Spreadsheets) for additional manipulation.

Statutory Compliance

The Compliance Requirements and related configurations in TallyERP 9 are as follows, with
regard to the implementation of:

o Direct Taxes: TDS/TCS, FBT
o Indirect Taxes: Excise, Service Tax, VAT, CST

Enabling Environment for Remote - Tally.NET Users
Tally Software Services (TSS) is responsible for the Remote Access Services. It allows:

o Remote Access - It is now possible for an authenticated user to access Tally.ERP 9 from any
computer system.

o Tax Audit Tools - The CA community will now be able to deliver affordable services to client,
addressing their Security and Privacy concerns.

1. Tally Definition Language

Tally Definition Language is the application development language of Tally TDL has been
developed to provide the user with the flexibility and power to extend the default capabilities of
Tally, and integrate them with the external applications. TDL provides a development platform for
the user. The entire User Interface of Tally.ERP 9 is built using TDL. TDL as a language, provides
capabilities for Rapid Development, Rendering, Data Management and Integration.

TDL is an Action-driven language based on definitions. It emphasizes strongly on the concept of
re-usability. It comprises of Interface and Data objects. Interface Objects mainly determine the
behaviour of the product in terms of user experience. Data objects are mainly used for data
persistence in the Tally Database.

Any Tally.ERP 9 user can learn TDL and develop extensions for Tally. The entire source code is
available as a part of the Tally Development Environment, i.e., with our product Tally Developer.

1.1 Comparison with other Languages

Today, there are many languages in the world which are used to develop applications.These
languages are developed keeping some specific areas of application in mind. Some languages
are good for developing front-end applications, while others may be good for writing system
programs.The various categories of languages available today are as follows:

Low Level Languages

Low level Languages are languages that can interact directly with the hardware. They comprise
instructions which are either directly given in computer-understandable digital code or in a pseudo
code. These languages require very sound knowledge in hardware. For example, Assembly
language or any native machine language.

Tty

POWER OF SIMPLICITY

TDL - Introduction

Middle Level Languages

Middle Level Languages consist of syntax, rules and features just like the high level languages.
However, they can also implement low level languages as part of the code. For example, C, C++,
etc.

High Level Languages

High level languages are very much like the English language. They are easy to learn, program
and debug. High level programming languages are sometimes divided into two categories: Third
Generation and Fourth Generation languages.

Third Generation Languages

Most High Level languages fall in the category of Third Generation Languages. Third Generation
languages are procedural languages, i.e., the programmer specifies the sequence of execution
and the computer strictly follows it. The execution starts from the first line of the code to the last
line, taking care of all the control statements and loops used in the program.

Fourth Generation Languages

There is no clear-cut definition for the Fourth Generation Languages (4GL). Normally, the 4GL are
high level languages which require significantly fewer instructions to accomplish a task. Thus a
programmer is able to quickly develop and deploy the code. Most 4GL are non-procedural
languages.

E.g., Some 4GL are used to retrieve, store and modify data in the database using a single line
instruction, whereas other 4GL use report generators to generate complex reports. It is sufficient
to specify headings and totals using the language, and the report is generated automatically.
Certain 4GL can be used to specify the screen design, which will automatically be created.

On having understood the categorization of computer languages, TDL can be categorised as a
Fourth Generation, High Level Language. The capabilities which TDL provides to the users is
much more than what other 4GL languages provide. This may extend to meeting specific
purposes like database management, report generation, screen design, etc.

TDL is a comprehensive 4G language which gives tremendous power in the hands of the
programmer by providing data management, complex report generation and screen design
capabilities, using only a few lines of code, leading to rapid development. Let us now analyse the
features in detail, which help us in understanding and appreciating the capabilities provided by the
development language of Tally, i.e., “TDL - Tally Definition Language’.

TDL - Introduction

Tty

POWER OF SIMPLICITY

2. The TDL Program - At a Glance

Before we discuss the capabilities and features of TDL in detail, let us have a look at the basic

TDL program.
The following figure describes all the components in a TDL Program.

The description, usage and detailed explanation of each component will be taken up in the

subsequent chapters.

= Definition

[#Menu; Gateway of Tally]
Add : Item : My First TDL [Zli?|::|l.a1,-r : My Report

= Action Keyword

= Definition Type

I
[Report: My Re:laort]

= Definition Name

Form : My Form

[Form: My Form]
Part : My Part

- Attribute Value

[Part: My Part]
Line : My Line

= Attribute

[Line: My Line]
Field : My Field

= Attribute Modifier

[Field: My Field]

Use : Name Field
Set as : @MyFormula
My FTrmuIa "My First TDL"

= Formula Name

. End-of-Code

\J
Special Symbal

Figure 1.1 TDL Components

Tty

POWER OF SIMPLICITY

TDL - Introduction

3. TDL Capabilities

Rapid Development

TDL is a language based on definitions. It is possible to reuse the existing definitions and deploy
them. This is a language meant for rapid development. It is possible to develop complex reports
within minutes. The user can extend the default functionalities of the product by writing a code
consisting of a few lines.

Multiple Output Capability

The same language can be used to send the output to multiple output devices and formats.
Whenever an output is generated, it can be displayed on the screen, printed, transferred to a file
in particular format, and finally mailed or transferred to a web-page using Http protocol. All this is
made possible just by writing a single line of code. Just imagine the technology used to develop
the platform that such a complex task is developed and implemented using only a few lines.

Data Management Capability

As discussed earlier, the data is stored and retrieved as objects. There are a few internal objects
predefined by the platform. Using TDL, it is possible to create and manipulate information on
these with ease. Suppose, an additional field is required by the user to store information as a part
of the predefined object. This capability is also provided in TDL, i.e., by using TDL, the user can
create a new field and store a value into it, which can be persisted in the Tally.ERP 9 database.

Integration Capability

To meet the challenges of the business environment, it becomes absolutely mandatory to share
information seamlessly across applications. Integration becomes a crucial factor in avoiding the
duplication of data entry. The Tally.ERP 9 platform has a built-in capability of integrating data with
other applications.The following are the different types of integrations possible in TallyERP 9:

o TallyERP 9 to TallyERP 9 using Sync

Tally.ERP 9 to external applications in various data formats
External DB to Tally.ERP 9 using XML and SDF formats
Tally.ERP 9 DB to external applications using ODBC
External DB to Tally.ERP 9 using ODBC

4. TDL Features

Definition Language

o o o o

A definition language provides the users with ‘Definitions’ that can be used to specify the task to
be performed. The user can specify the task to be performed, but has no control over the
sequence of events that occur while performing the specified task. The sequence of events is
implicit to the language and cannot be changed by the user. TDL works on Named Definitions,
which means that every definition should have a name and that name should be unique. TDL has
User Interface Objects like Reports, Forms, Parts, Lines and Fields as definitions.

TDL can define Reports, Menus, Forms, and so on, but the Definitions will not have any relevance
unless they are used. Definitions are deployed by use, not by existence.

Tty

TDL - Introduction POWER OF SIMPLICITY

TDL is based on concepts pertaining to Object Oriented Programming. This language has been
created for reusability. Once a definition is created, it can be reused any number of times. Besides
the reusing capability, the user can also add new features, along with the existing definitions.

TallyERP 9 has a singular view of all the TDL Definitions, which means that the TallyERP 9
executable reads TDL (user defined and default) as one program. On invoking Tally.ERP 9, all the
default TDL files of TDLServer.DLL will be loaded. The user TDLs will be subsequently loaded as
specified in Tally.ini.

Non-Procedural Language

Most of our programming experience has been in dealing with a procedural language where we
define a sequence of actions to define the sequence of events that take place. The entire control
is with the programmer. The programmer is able to determine the start and end-point of the
program. The programmer cannot control the sequence. All the sequences are implicit in the
program. The programmer cannot write his/her own procedure. The platform provides a set of
functions for the TDL programmer.

Action-Driven Language

The programmer can only control as to what happens when a particular event takes place. During
interaction, the user can select any sequence of actions. Based on his/her action, a particular
segment of code gets executed.

Rich Language

TDL is a rich language, that refers to a list of functions, attributes, actions, etc., which are
provided by the platform. It is possible to develop a complex report or modify the existing one
within no time. Imagine how many lines of code would be required if a simple button were to be
added using a traditional programming language.

Flexibility and Speed

The architecture of the software and the language provide extraordinary flexibility and speed.
Speed in this regard refers to the speed of deployment. With TallyERP 9, the deployment is
extremely rapid.

Tally.ERP 9 is flexible enough to change its functionality based on the customer’s business
requirements. Most of the times, the customer-specific requirements may seem like major
functional changes that have to be done, but they may only be minor variations of the existing
functionality, which can be done within no time.

Learning Outcome

The major functional areas of Tally.ERP 9 are purchase processes, sales processes,
manufacturing processes, payroll, MIS, statutory compliance and TSS.

o TDL is the application development environment of Tally.ERP 9.
o TDL is a Fourth Generation High Level Language.
o TDL is not only a definition language, but also a non-procedural, action-driven language.

Tty

POWER OF SIMPLICITY

TDL Components

Introduction

TDL is a language based on definitions. It is an action-driven language, i.e., whenever the user
performs an action, a particular segment of code gets executed. In this lesson, an overview and
basic functionality of each component involved in a TDL program will be provided.

1. Writing a Basic TDL Program

TDL allows us to define tasks in standard English statements. This simplifies the process of
definition, allowing even a person without any programming language background to work on TDL.

The TDL statements required to perform a particular task, can be created in a file using IDE
provided by Tally.ERP 9, such as Tally Developer. Such a file is called a TDL file.

1.1 Steps to create a TDL Program

o Open any ASCII text editor such as notepad, or use the IDE Tally Developer, provided by
Tally.ERP 9.

o Create a new file.
o Type TDL statements in the file.

o Save the file with a meaningful name and extension, as applicable to the editor. The editor
can save the file with an extension ‘.txt’, ‘.idl’

o The file can be compiled into a file with an extension.tcp (Tally Compliant Product). It is
possible to compile the file for a particular Tally serial number.

o Itis possible to run all files, i.e.,.txt,.tdl and.tcp in Tally.ERP 9.
1.2 Specification of TDL Files
There are two ways of implementing the TDL code:
o Specifying the TDL files in Tally.ini (Configuration Settings File)
o Specifying the TDL files through Tally.ERP 9 application configuration screen
Specifying the TDL files in Tally.ini
The path of the TDL program has to be included in the Tally.ini file, using a parameter called ‘TDL..

If the parameter ‘User TDL is set to NO, Tally.ERP 9 will not read any TDL parameters specified in
the Tally.ini file.

Syntax

User TDL = Yes

TDL = <Path\filename> with extension
Example:

User TDL = Yes

TDL Components

Tty

POWER OF SIMPLICITY

TDL = C:\Tally.ERP 9\MyReport.tcp
or
TDL = C:\Tally.ERP 9\MyReport.txt

When Tally.ERP 9 starts, it looks for a file named ‘MyReport.tcp’ or ‘MyReport.txt’ in the directory
C:\Tally.ERP 9. On loading the default TDL files into memory, TallyERP 9 reads and loads every
TDL file mentioned in Tally.ini into memory before displaying the first Menu, ‘Gateway of Tally’.

Specifying TDL file through Tally.ERP 9 application configuration screen

Alternatively, the TDL file name can be specified in TDL Configuration screen, by going to F12:
Configuration-> Product & Features, and clicking on F4:Manage Local TDLs. In this screen,
set the value as YES for ‘Load TDLs on Start up’ and specify the Path\filename, with extension, in
‘List of TDLs to preload on Tally Startup’. Following figure shows the TDL configuration screen:

Tally.ERP9

Lol-E] s

TOL Configuration

P: Print E: Export | M: E-Mail | O: Upload | S: Shop

Global Enterprises

G: Language | K: Keyboard| K: Conlil Cenbiz| H: Supged Carfre| H: Help

ctrl + M

Load TDLs on startup

TDL Configuration
?

List of TDLs to preload on Tally startup

0 Quit

Ll

Tally MAIN --= Gateway of Tally --> Configuration --> Product & Features --» TOL Configu |(c) Tally Solutions Pvt. Lte|Sat, 27 Jul, 21|13:13:38

Cerl + N

Figure 2.1 Specification of TDL files

To load a Default Company in Tally.ERP 9, the ‘Load’ parameter is used as follows:

Example:
Default Companies = yes
Load = 00002

10

Tty

POWER OF SIMPLICITY TDL Components

Here, 00002 is the company folder that resides in Tally.ERP 9\Data.
The data path can be specified with the parameter ‘Data’.
Example:

Data = C:\Tally.ERP 9\Data

e Restart TallyERP 9 whenever there are changes made in the TDL program, so
oteS that they can be implemented.

1.3 Executing Multiple Files using Include Definition

Since TDL can span or exist across files, the definition INCLUDE’ provides the convenience of
modularizing the application and specifying all of them in one TDL file. It allows the user to include
TDL code existing in separate fileffiles, into the current file.

‘Include’, as the name suggests, gives us the ability to include another TDL file into a file, instead
of declaring it in Tally.ini separately.

Syntax
[Include : <path/filename>]

In case the TDL file is in the same directory, either the file name or the complete path for the file
has to be provided.

Example:

Let us assume we are using two files, sample1.txt and sample2.txt. To run both the files, we have
to include sample2.txt in sample1.txt.

[Include : sample2.txt]

2. TDL Interfaces

We have already seen that TDL is a language based on definitions. When we start Tally.ERP 9,
the Interfaces which are visible on the screen are Menu, Report, Button and Table. In TDL,
specific definitions are provided to create the same.

A Report and Menu can exist independently. A Menu is created by adding items to it while a
Report is created using Form, Part, Line and Field. These are the definitions which cannot exist
without a Report. TDL operates through the concept of an action which is to be performed and
Definition on which the action is performed. The Report is invoked based on the action.

TDL program to create a Report contains the definitions Report, Form, Part, Line and Field and an
action to execute the Report. A Report can have more than one Form, Part, Line and Field
definitions, but at least one has to be there.

The hierarchy of these definitions is as follows:
o Report uses a Form
o Formuses a Part
o Partusesaline

1"

Tty

POWER OF SIMPLICITY

TDL Components

o Line uses a Field
o Field is where the contents are displayed or entered
The Report is called either from a Menu or from a Key event.

3. ‘Hello TDL’ Program

The ‘Hello TDL program demonstrates the basic structure of TDL. The Report is executed from
the existing Menu ‘Gateway of Tally’.

Purpose: To invoke a new Report displaying the text “Welcome to the world of TDL” from the
main Menu ‘Gateway Of Tally’:

[#Menu : Gateway of Tally]
Item : First TDL : Display : First TDL Report
[Report : First TDL Report]
Form : First TDL Form
[Form : First TDL Form]
Parts : First TDL Part
[Part : First TDL Part]
Lines : First TDL Line
[Line : First TDL Line]
Fields : First TDL Field
[Field : First TDL Field]
Set as : "Welcome to the world of TDL"

This code adds a new Menu ltem ‘First TDL in the ‘Gateway Of Tally’ menu. When the Menu ltem is
selected the report, the Report ‘First TDL Report’ is displayed. The report is in ‘Display’ mode, as
the action ‘Display’ is specified while adding the menu item ‘First TDL. User inputs are not
accepted in this report. The text ‘Welcome to the world of TDL is displayed in the Report, since it
contains only one field.

12

Tty

POWER OF SIMPLICITY TDL Components

First TOL Report ABC Company Ltd Ctrl + M ES

Welcome to the world of TOL

Figure 2.2 Output of Welcome to the world of TDL program

4. TDL Components

The TDL consists of Definitions, Attributes, Modifiers, Data Types, Operators, Symbols and
Prefixes, and Functions. Let us now analyse the components of the language.

4.1 Definitions

Tally Definition Language (TDL) is a non-procedural programming language based on definitions.
TDL works on named definitions. The biggest advantage of working with TDL is its re-usability of
definitions.

All the definitions are reusable by themselves and can be a part of other definitions. Whenever a
change in code needs to be reflected in a program, TallyERP 9 must be restarted. All definitions
start with an open square bracket and end with a closed bracket.
Syntax

[<Definition Type> : <Definition Name>]

Where,

<Definition type> is the name of one of the predefined definition types available in the platform,
example, Collection, Menu, Report, Form, Part, Line, etc.

<Definition Name> refers to any user-defined name, which the user provides to instantiate the
definition, i.e., whenever a definition is created, a new object of a particular definition type comes
into existence.

13

Tty

TDL Components POWER OF SIMPLICITY

Example:

[Part : PartOne]

In this example, the type of definition is Part and the name of the definition is PartOne.
Types of Definitions

The various definitions in TDL are categorized as follows:

Interface Definitions — Menu, Report, Form, Part, Line, Fields, Button, Table
Data Definitions— Obiject, Variable, Collection

Formatting Definitions — Border, Style, Color

Integration Definitions — Import Object, Import File

O o o o o

Action Definitions — Key
o System Definitions
Interface Definitions

Definitions which are used to create a user interface are referred to as Interface definitions. The
definitions in this category are Menu, Report, Form, Part, Line, Field, Button and Table.

Menu: A Menu displays a list of options. The Tally.ERP 9 application determines the action to be
performed on the basis of the Menu Item selected by the user. The ‘Gateway of Tally’ is an
example of a ‘Menu’. A Menu can activate another Menu or Report.

Report: This is the fundamental definition of TDL. Every screen which appears in Tally.ERP 9,
i.e., any input screen or output screen, is created using the ‘Report’ definition. A Report consists
of one or more Forms.

Form: A Form consists of one or more Parts.

Part: A Part consists of one or more Lines.

Line: A Line consists of one or more Fields.

Field: It is the place where data (constant or variable) is actually displayed/entered.

Button: The user can perform an action in three ways, i.e., by selecting a menu item, by pressing
a key or by clicking on a button. The ‘Button’ definition allows the user to display a button on the
Button bar and execute an action, when it is clicked.

Table: The ‘Table’ definition displays a list of values as a Table. Data from any collection can be
displayed as a Table.

Data Definitions

Definitions which are used for storing the data are referred to as Data Definitions. The definitions
in this category are Object, Variable and Collection.

Object: An object is the definition which consists of data, and the associated/related functions,
commonly called as methods that manipulate the data. TDL is made up of User interface and Info
Objects. Info Objects can be External (user defined) or Internal (platform defined). External or
user-defined objects are not persistent in the Tally database. It is not possible to create an Internal
Object Definition in TDL, i.e., they are predefined by the platform. It is, though, possible to perform
modifications on it. A Ledger/Group is an example of an internal object.

14

Tty

POWER OF SIMPLICITY TDL Components

An object can further contain an object/objects.

Collection: A Collection is a group of objects. Collections can be made up of internal or external
objects. These can be based on multiple collections also. We can create a collection by
aggregating the collections at a lower level in the hierarchy of objects.

Variables: Variables are used to control the behaviour of reports and its contents. The variables
can assume different values during the execution, and based on those values, the application
behaves accordingly. The option Plain Paper/Pre-Printed, while printing the invoice, is an
example of a variable controlling the report.

Formatting Definitions

Definitions which are used in formatting a user interface are referred to as Formatting Definitions.
The definitions in this category are Border, Style and Color.

Border: This introduces a single/double line as per user specifications. Thin Box, Thin Line and
Common Border are all examples of pre-defined borders.

Style: The ‘Style’ definition determines the appearance of the text to be displayed by using a font
scheme. The Font name, Font style and Font size can be changed/defined using the ‘Style’
definition. In default TDL, the pre-defined Style definitions are Normal Bold, Normal Italic and
Normal Bold Italic.

Color: The ‘Color’ definition is used to define a color. A name can be given to an RGB value of
color. Once a name is assigned to an RGB color value, it can be expressed as an attribute. In
TDL, the only color names that can be specified are Crystal Blue and Canary Yellow.

Integration Definitions

Definitions which make the import of data available in SDF (Standard Data Format) are referred to
as Integration Definitions. ‘Import Object’ and ‘Import File’ are the two definitions classified in this
category.

Import Object: This identifies the type of information that is being imported into Tally.ERP 9. The
importable objects can be of the type Groups, Ledgers, Cost centre, Stock ltems, Stock Groups,
Vouchers, etc.

Import File: The ‘Import file’ definition allows the user to describe the structure of each record in
the ASCII file that is being imported. The field width is specified as an attribute of this definition.

Action Definitions

The action definitions allow the user to define an action, to take place when a key combination is
pressed. It also associates an object on which the action is performed. The ‘Key’ definition falls in
this category.

Key: The ‘Key’ Definition is used to associate an action with a key combination. The action is
performed when the associated key combination is pressed.

System Definitions

System Definitions are viewed as being created by the administrator profile. Any items defined
under System Definitions are available globally across the application.

System Definitions can be defined any number of times in TDL. The items defined are appended
to the existing list. System Definitions cannot be modified.

15

Tty

TDL Components POWER OF SIMPLICITY

Examples of System Definitions are System: Variable, System: Formula, System: UDF and
System: TDL Names.

4.2 Attributes

Each definition has properties, referred to as ‘Attributes’. There is a predefined set of attributes
provided by the platform for each definition type. The attribute specifies the behaviour of a
definition. Attributes differ from Definition to Definition. A Definition can have multiple attributes
associated with it. Each attribute has a 'Name' (predefined) and an assigned value (provided
by the programmer).

A value can be associated to a given attribute either directly, or through symbols and prefixes.
Apart from a direct value association of the attribute, there are ways to associate alternate values
dynamically, based on certain conditions prevailing at runtime.

Syntax
[<Definition Type> : <Definition Name>]
<Attribute Name> : <Attribute Value>
Where,
<Attribute Name> is the name of an attribute, specific for the definition type.
<Attribute Value> can be a constant or a formula.

Example:
[Part : PartOne]
Line : PartOne

Classification of Attributes

The classification of attributes is done based on the number of values they accept, and if they can
be specified multiple times under the definition, i.e., based on the number of sub-attributes and
the number of values.

There are seven types of attributes:
Single and Single List

A Single type attribute accepts only one value and can’t be specified multiple times. The
attributes Set As, Width, Style, etc., are all of ‘Single’ type.

Example:
[Field : Fld 1]

Set As : “Hello”
Set As : “IDL”

In this field, the string “TDL” is displayed, as ‘Set As’ is a ‘Single’ type attribute. The value of the
last specified attribute will be displayed.

A Single List type attribute accepts one value, which can be specified multiple times. This
attribute also accepts a comma-separated list.

16

Tty

POWER OF SIMPLICITY TDL Components

Example:
[Line : Line 1]
Field : Fl1d 1, Fl1d 2

Field : F1ld 3

The line Line 1 will have three fields Fid 1, Fld 2 and FId 3.

Dual and Dual List

Dual type attributes accept two values, and can’t be specified multiple times. The attribute
‘Repeat’ is an example of ‘Dual’ type.

Example:

Repeat : Line 1 : Collection 1

Dual List type attributes accept two values, and can be specified multiple times.

Example:
Set : Var 1 : “Hello”
Set : Var 2 : “TIDL”

The values “Hello” and “TDL” are being assigned to the variables Var 1 and Var 2, respectively.

Triple and Triple List
Triple type attributes accept three values, and can’t be specified multiple times.
Example:

Object : Ledger Entries : First: $LedgerName = “Tally”

Triple List type attributes accept three values, and can be specified multiple times.
Example:

Aggr Compute : TrPurcQty: Sum : $BilledQty
Aggr Compute: TrSaleQty : Sum : $BilledQty

The Attribute type ‘Menu item’

The attribute type ‘Menu ltem’ allows the user to add a menu item in the given ‘Menu’ definition.
Example:

[#Menu : Gateway Of Tally]

Item : Sales Analysis : Display : Sales Analysis
Item : Purchase Analysis : P : Display : Purchase Analysis

Here, the options ‘Sales Analysis’ and ‘Purchase Analysis’ are added to the ‘Gateway of Tally’
Menu. For the option ‘Purchase Analysis’, the character ‘P’ is explicitly specified as a hot key.

17

Tty

TDL Components POWER OF SIMPLICITY

Attributes of Interface Definitions

Frequently used attributes of interface definitions like Report, Form, Part, Line and Field, are
explained in this section.

Report Definition Attributes
Form

Every report requires one or more Forms. If there are more than one forms, then the first form is
displayed by default. When one is in ‘Print’ mode, all the forms will be printed one after the other.

Syntax
Form : <Form Name>
Example:

[Report : HW Report]
Form : HW Form

This code defines the report ‘HW Report’, using the form HW Form.

If one chooses a Report that has no Forms defined, TallyERP 9 assumes that the Form Name is
the same as the Report Name and looks for it. If it exists, TallyERP 9 displays it. Otherwise,
Tally.ERP 9 displays an error message ‘Form :<Report Name> does not exist’.

Title
The ‘Title’ attribute is used to give a meaningful title to the Report.
Syntax

Title : <String or Formula>

By default, Tally.ERP 9 displays the name of the Report as Title, when it is invoked from the menu. If
the ‘Title’ attribute is specified, then it overrides the default title.

Example:
[Report : HWReport]
Form : HWForm
Title : “Hello World”

Here, “Hello World” is displayed as the title of the Report, instead of HWReport.

Form Definition Attributes
Part/Parts

The attribute ‘Part’ defines Parts in a Form. ‘Part’ and ‘Parts’ are synonyms of the same attribute. It
specifies the names of the Parts in a Form. By default, the Parts are aligned vertically.

Syntax
Part/Parts : <List of Part Names>

18

Tty

POWER OF SIMPLICITY TDL Components

Example:
[Form : HW Form]

Part : HW Title Partition, HW Body Partition
This code segment defines two parts, HW Title Partition and HW Body Partition, which are
vertically aligned, starting from the top of the Form.
Part Definition Attributes
Line/Lines
This attribute specifies the Lines contained in a Part.
Syntax

Line/Lines : <list of line names>
Example:

[Part : HW Part]
Line : HW Linel, HW Line2

Line Definition Attributes
Field/Fields

The attributes ‘Field’ and ‘Fields’ are similar. They start from the left of the screen or page, in the
order in which they are specified.

Syntax
Field/Fields : <List of Field Names>
Example:
[Line : HW Line]

Fields : HW Field

Set as
This attribute sets a value to the Field.
Syntax

Set as : <Text or Formula>
Example:

[Field : HW Field]
Set as : ”“"Hello TDL”

Here, the text “Hello TDL” is displayed in the report.
Info

This attribute is typically used to set text for prompts and titles as display strings. Even when used
in Create/ Alter mode, this attribute does not allow the cursor to be placed on the current field, as
against the Attribute ‘Set as’. However, in Display mode, the attributes ‘Set as’ and ‘Info’ function
similarly.

19

Tty

TDL Components POWER OF SIMPLICITY

Syntax
Info : <Text or formula>

Further, if both the attributes (Set as and Info) are specified, the attribute Info gets the
precedence, and the value set within the attribute Info overrides the value set within the attribute
Set as.

Skip
This attribute causes the cursor to skip the particular field and hence, the value in the field cannot
be altered by the user, even if the report is in ‘Create’ or ‘Alter’ mode.

Syntax
Skip : <Logical Formula>
Example:
[Field : HW Field]

Type : String
Set as : “Hello World"
Skip : Yes

This code snippet sets the value in the ‘HW Field’ as ‘Hello World’ and forces the cursor to skip
the field.
It can also be rewritten as:

[Field : HW Field]

Type : String

Info : “Hello World"“
i 4
otes The attribute Info at Field combines both Skip and Set As.
0
4.3 Modifiers

Modifiers are used to perform a specific action on a definition or on an attribute. They are
classified as Definition Modifiers and Attribute Modifiers, based on whether a definition or
attribute is being modified. Definition Modifiers are #, ! and *. Attribute Modifiers are Use,
Add, Delete, Replace/Change, Option, Switch and Local.

The modifiers can also be classified into two types, based on the mode of evaluation:
o Static/Load time modifiers: Use, Add, Delete, Replace/Change
o Dynamic/Real time modifiers: Option, Switch and Local

20

Tty

POWER OF SIMPLICITY TDL Components

Static/Load time Modifiers

These modifiers do not require any condition at the run time. The value is evaluated at load time
only and remains static throughout the execution. Use, Add, Delete, Replace are static modifiers.

Use
The USE Keyword is used in a definition to reuse an existing Definition.
Syntax
Use : <Definition Name>
Example:
[Field : DSPExplodePrompt]

Use : Medium Prompt

All the properties of the existing field definition Medium Prompt are applicable to the field
DSPExplodePrompt.

Add
The ADD modifier is used in a definition to add an attribute to the Definition.
Syntax
Add : <Attribute Name> [:<Attribute Position>:<Attribute Name>]
:<Attribute Value>
Where,

<Attribute Name> is the name of the attribute specific to the particular definition type.

<Attribute Position> can be any one of the keywords Before, After, At Beginning and At End. By
default, the position is At End.

<Attribute Value> can either be a constant or a formula.
Example:

[#Form : Cost Centre Summary]
Add : Button : Changeltem

A new button Changeltem is added to the form Cost Centre Summary.
Example:

[#Part : VCH Narration]
Add : Line : Before : VCH NarrPrompt : VCH ChequeName, VCH AcPayee

The lines ‘'VCH ChequeName’ and ‘VCH AcPayee’ are added before the line ‘VCH NarrPrompt’ in
the part ‘VCH Narration’.

21

Tty

TDL Components POWER OF SIMPLICITY

Delete
The ‘Delete’ modifier is used in a definition to delete an attribute of the Definition.
Syntax

Delete : <Attribute Name> [:<Attribute Value>]

Where,
<Attribute Value> is optional, and can either be a constant or a formula. If the attribute value is
omitted, all the values of the attribute are removed.

Example:

[Form : Cost Centre Summary]
Use : DSP Template
Delete : Button : Changeltem

The button ‘Changeltem’ is deleted from the form ‘Cost Centre Summary’. The functionality of the
button ‘Changeltem’ is no longer available in the form ‘Cost Centre Summary’. If the Button name
is not specified, then all the buttons will be deleted from the Form.

Replace
The ‘Replace’ modifier is used in a definition to alter an attribute of the Definition.
Syntax

Replace : <Attribute Name> : <Old Attribute Value> : <New Attribute Value>
Where,

<Attribute Name> is the name of the attribute specific for the particular definition type.
<OId Attribute Value > and <New Attribute Value> can be either a constant or a formula.

Example:
[Form : Cost Centre Summary]
Use : DSP Template

Replace : Part : Partl : Part2
The part ‘Part1’ of form ‘Cost Centre Summary’ is replaced by the part ‘Part2’. Now, only the
properties of ‘Part2’ are applicable.
Dynamic/Real time modifiers

Dynamic modifiers get evaluated at the run time based on a condition. These modifiers are run
every time the TDL is executed in an instance of Tally. ‘Option’, ‘Switch’ and ‘Local’ are the
Dynamic modifiers.

22

Tty

POWER OF SIMPLICITY TDL Components

Local

The ‘Local’ attribute is used in the context of the definition to set the local value within the scope of
that definition only.

Syntax:
Local : <Definition Name> : <0Old Attribute Value>
: <New Attribute Value>
Example:
Local : Field : Name Field : Set As : #StockItemName

Value of the formula #StockltemName is now the new value for the attribute Set As of the field
Name Field applicable only for this instance. Elsewhere, the value will be as in the field definition.

Option

Option is an attribute which can be used by various definitions, to provide a conditional result in a
program. The ‘Option’ attribute can be used in the ‘Menu’, ‘Form’, ‘Part’, ‘Line’, ‘Key’, ‘Field’,
‘Import File’ and ‘Import Object’ definitions.

Syntax
Option : <Optional definition> : <Logical Condition>
Where,

<Modified Definition> is the name of a definition, defined as optional definition using the
definition modifier !.

If the ‘Logical’ value is set to TRUE, then the Optional definition becomes a part of the original
definition, and the attributes of the original definition are modified based on this definition.

Example:
[Field : FldMain]

Option : FldFirst : condl
Option : FldSecond : cond2

The field FIdFirst is activated when cond1 is true. The field FldSecond is activated when cond2
is true.
Optional definitions are created with the symbol prefix "!" as follows:

['Field : FldFirst]

[!Field : FldSecond]

Switch - Case

The ‘Switch - Case’ attribute is similar to the ‘Option’ attribute, but reduces the code complexity
and improves the performance of the TDL Program.

The ‘Option’ attribute compulsorily evaluates all the conditions for all the options provided in the
description code, and applies only those which satisfy the evaluation conditions.

23

Tty

TDL Components POWER OF SIMPLICITY

The attribute ‘Switch’ can be used in scenarios where evaluation is carried out only till the first
condition is satisfied.

Apart from this, ‘Switch’ statements can be grouped using a label. Therefore, multiple switch
groups can be created, and zero or one of the switch cases could be applied from each group.

Syntax

Switch : Label : Desc name : Condition

Example:
[Field : Sample Switch]

Set as : "Default Value"

Switch : Casel : Sample Switchl : ##SampleSwitchl
Switch : Casel : Sample Switch2 : ##SampleSwitch?
Switch : Casel : Sample Switch3 : ##SampleSwitch3
Switch : Case2 : Sample Switch4 : ##SampleSwitch4

Sequence of Evaluation — Attributes
The order of evaluation of the attributes is as specified below:

Use

Normal Attributes
Add/Delete/Replace
Option

Switch

Local

oOaRWN =~

Delayed Attributes

Add/Delete/Replace are referred to as Delayed attributes because even if they are specified
within the definition in the beginning, their evaluation will be delayed till the end, within the static
modifier and normal attributes.

4.4 Actions in TDL

TDL is an action-driven language. Actions are activators of specific functions with a definite result.
Actions are performed on two principal definition types, ‘Report’ and ‘Menu’. An action is always
associated with an originator, requestor and an object. All the actions originate from the Menu,
Key and Button.

An action is evaluated in the context of the Requestor and Object. Typically, actions are initiated
through the selection of a Menu item or through an assignment to a Key or a Button.

Examples of Actions are: Display, Menu, Print, Create, Alter, etc.
Syntax

Action : <Action Name> [: <Definition/Variable Name> : Formulal]

24

Tty

POWER OF SIMPLICITY TDL Components

Where,

<Action Name > is the name of action to be performed. It can be any of the pre-defined actions.
<Definition/Variable Name> is the name of definition/variable, on which the action is performed.
Example:

Action : Create : My Sample Report

4.5 Data Types

The Data Types in TDL specify the type of data stored in the field. TDL, being a business
language, supports business data types like amount, quantity, rate, etc., apart from the other
basic types. The data types are classified as Simple Data Types and Compound Data Types.

Simple Data Type

This holds only one type of data. These data types cannot be further divided into sub-types.
String, Number, Date and Logical data types fall in this category.

Compound Data Type

It is a combination of more than one data type. The data types that form the Compound Data Type
are referred to as sub-data types. The Compound Data types in TDL are: Amount, Quantity, Rate,
Rate of exchange and Aggregate.

Data Types Sub-Types

Simple Data Types

Number

String

Date

Logical

Compound Data Types

Amount Base/Direct Base
Forex
Rate Of Exchange
DrCr

Quantity Number
Primary Units/Base Units
Secondary Unit/Alternate Units/Tail Units

Rate Price
Unit Symbol

Rate of Exchange

Rate Price

Table 2.1 Data Types and its Sub-Data Types

25

Tty

TDL Components POWER OF SIMPLICITY

The type for the field definition is specified using the Type attribute.

Syntax
[Field : <Field Name>]
Type : <Data type> : <Sub-type>

Example:
[Field : Qty Secondary Field]

Type : Quantity : Secondary Units

4.6 Operators in TDL

Operators are special symbols or keywords that perform specific operations on one, two or three
operands and then return a result.

The four types of operators in TDL are as follows:

Arithmetic Operators

+ Addition
. Subtraction
/ Division
* Multiplication

Table 2.2 Arithmetic Operators

Logical Operators
The logical operators used are: OR, AND,NOT, TRUE/ON/YES and FALSE/OFF/NO

OR Returns TRUE if either of the expressions is True.

AND Returns TRUE when both the expressions are True.

NOT Returns TRUE, if the expression value is False and
FALSE, when expression value is True.

TRUE/ON/YES Can be used to check if the value of the expression is
TRUE.

FALSE/OFF/NO Can be used to check if the value of the expression is
FALSE.

Table 2.3 Logical Operators

Comparison Operators

26

Tty

POWER OF SIMPLICITY TDL Components

A Comparison Operator compares its operands and returns a logical value based on whether the
comparison is True. The Comparison Operator returns the value as TRUE or FALSE. TDL
supports the following Comparison Operators:

= /Equal/Equals Checks if the values of both the expressions are equal.

</LessThan/Lesser Than | Checks if the value of <expression 1> is less than the

| Lesser value of <expression 2>.

>/Greater Than/More Checks if the value of <expression 1> is greater than
the value of <expression 2>.

In Checks if the value is in the List of comma separated
values.

Null Checks whether the expression is Empty.

Between And Checks if the expression value is in the range.

Table 2.4 Comparison Operators

String Operators
String operators facilitate the comparison of two strings. The following are the String operators:

Contains/Containing Checks if the expression contains the given string.

Starting With/Beginning | Checks if the expression starts with the given string.

With/Starting
Ending With/Ending Checks if the expression ends with the given string.
Like Checks if the expression matches with the given string

pattern.

Table 2.5 String Operators

The operator ‘=" is a comparison operator, not an assignment operator. There is

4 no assignment operator in TDL. While evaluating the expression, some

NoteS keywords are ignored. The keywords which are not considered are Than, With, By,
To, Is, Does, Of.

4.7 Special Symbols

The Symbol Prefix in Tally Definition Language (TDL) has different usage and behaviour, when
used with different definitions and attributes of definitions.

Special Symbols used in TDL are $, $$, @, @@, #, ##, ;, ;;, i, [* */, +,!, *and _. Each of
these symbols are used for a specific purpose. The usage of each of these symbols will be
discussed in detail in the subsequent chapters.

27

Tty

TDL Components POWER OF SIMPLICITY

4.8 Functions

A function is a small code which accepts a certain number of parameters, performs a task and
returns the result. The function may accept zero or more arguments, but returns a value.

The functions in TDL are defined and provided by the platform. These functions are meant to be
used by the TDL programmer and are specifically designed to cater to the business requirement
of the Tally.ERP 9 application.

TDL has a library of functions which allows performing string, date, number and amount related
operations apart from the business-specific tasks. Some of the basic functions provided by TDL
are $$StringLength, $$Date, $$RoundUp, $$AsAmount. TDL directly supports a variety of
business related functions such as $$GetPriceFromLevel, $$BillExists, $$ForexValue, etc.

Syntax
$$<Function Name> : <Argument List>
Example:
$$SysName : EndOfList

Here, the function $$SysName returns TRUE, if the parameter passed is a TDL reserved string.
Learning Outcome

o Ina TDL program, the ‘Report’ and ‘Menu’ definitions can exist independently.
o The hierarchy of definitions in a TDL program are as follows:
m Report uses a Form
s Form uses a Part
s Partusesaline
m Line uses a Field and
= A Field is where the contents are displayed or entered.
o The Reportis called either from a Menu or from a Key Event.
o TDL consists of Definitions, Attributes, Modifiers, Data Types, Operators, Symbols &
Prefixes, and Functions.

28

Tty

POWER OF SIMPLICITY

Symbols and Prefixes

Introduction

In the previous lesson, we discussed the various TDL Components like definitions, attributes,
functions, symbol prefixes, variables, etc.

In TDL, there are a few symbols which are used for specific purposes. Some symbols are used as
access specifiers, i.e., mainly used to access the value of a method, variable, field, formula, etc.
Some are used for general purpose, such as modifiers.

Special Symbols

v

Access
Specifiers

<

General
Symbols

Figure 3.1 Symbol Categorization

1. Access Specifiers/Symbol Prefixes

Symbols Usage

@ Used to access Local formula

@@ Used to get the value of a System formula

When prefixed to Field name, gives the value of the field
#i Used to get the value of a Global variable

$ Used to access the value of an Object Method

$$ Used to call a Function

Table 3.1 Access Specifiers

29

Tty

Symbols and Prefixes POWER OF SIMPLICITY

2. General Symbols

Symbols Usage

LA L Used for adding comments in TDL

+ Used as line continuation character

_(underscore) Used to expose methods to ODBC SQL Procedure
* Used to Reinitialize a Definition

! Used to create an Optional Definition

Used as a definition modifier

Symbols Usage

Table 3.2 General Symbols

3. The Usage of @ and @@

Formula

In TDL, large complex calculations can be broken down into smaller simple calculations or
expressions expressed as a Formula. The values computed using these formulae can be
accessed using the symbol prefixes @ and @@.

Naming Conventions for Formula
o Caseinsensitive
o Only alphanumeric characters are allowed

o Space insensitive at Definition time. However, during deployment or usage of the same,
spaces are not allowed

Classifications of formulae
o Local Formula
o Global Formula
3.1 Defining a Local Formula using @

A Local Formula is one which can be defined and retrieved at any Interface Definition. The scope
of the local formula is only within the current definition. A local formula is usually defined if the
formula is specific to a definition and not required by any other definition.

The value of a Local Formula can be accessed by using the Symbol Prefix @.
Example:

[Field : CompanyNameandAddress]
Set as : “Tally India Pvt Ltd, No 23 & 24, AMR Tech Park II, Hongasandra, +
Bangalore”

This code can also be written, using the Local Formula, as:

[Field : CompanyNameandAddress]

30

Tty

POWER OF SIMPLICITY Symbols and Prefixes
Company : “Tally India Pvt Ltd, ”
Address : “No 23 & 24, AMR Tech Park II, Hongasandra, ”
City : “Bangalore”
Set as : @Company + (@Address + @City

3.2 Defining a Global Formula using @@

A Global Formula is one which, when defined once, is available globally. In other words, the
Global Formula value can be accessed by all the Definitions. A Global formula is defined when a
formula is required at many locations. The value of a Global Formula can be accessed using the
Symbol Prefix @@. A Global Formula can also be referred to as a System Formula. All the Global
Formulae must be defined within the [System: Formula] Definition.

Example:

[System : Formula]
AmtWidth : 20

[Field : RepTitleAmt]
width : @@AmtWidth

[Field : RepDetailAmt]
wWidth ! @@AmtWidth

[Field : RepTotalAmt]
Width : @@AmtWidth

In this example, all the Fields assume the same width. If the width of the fields needs to be

altered, a change is made only at the [System: Formula] Definition Section. This change will be
applied to all the Fields, using the Global Formula AmtWidth.

4. The Usage of # and ##
In TDL, the Symbol Prefix # can be used for:
o Referencing a field using #
o Modifying the existing definitions using #

31

Tty

Symbols and Prefixes POWER OF SIMPLICITY

4.1 Referencing a Field using #
The Symbol Prefix # is used to retrieve the value from another Field.
Example:
[Field : HW]
Set as : “Hello World”
[Field : HW1]
Set as : #HW
In this example, the value within the Field ‘HW’ is being set to the Field ‘HW1’. In other words, the
Field HW1 is set to “Hello World”, by using #HW.
4.2 Modifying existing Definitions using #

The Symbol Prefix # is also used to modify existing definitions. One can alter the attributes of the
definition. For example, adding a new Field within a ‘Line’ definition.

Example:

[#Menu : Gateway of Tally]
Add : Key Item : Hello World: H : Display : HWReport
Title : “Tally Gateway”

[#Field : LedParticulars]
width : 50

In this example, the existing Menu ‘Gateway of Tally’ (default Menu) has been altered to add the

Item ‘Hello World’ and the Title of the Menu has been changed to ‘Tally Gateway’. The existing
Field ‘LedParticulars’ has also been altered to set its attribute ‘Width’ to the value of 50.

4.3 Accessing value from a Variable using ##

As the name suggests, a Variable is a named container of data which can be altered as and when
required. In TDL, Variables can be classified as Local and Global Variables. Local variables retain
their value only within a particular Report. Global variables, on the other hand, retain their values
throughout the session or permanently, based on the ‘Variable’ Definition. We will learn more
about Variables later.

The value of a Variable can be accessed using the symbol prefix ##. Both Local and Global
Variables can be retrieved using ##. Local variable is being checked for first. In cases where the
Local Variable is not found, the Global Variable value is assumed.

32

Tty

POWER OF SIMPLICITY Symbols and Prefixes

Example:
[Field : FGField]

Set as : ##RTitle
[Report : DBLedReport]

Title : if ##LedgerName = “ ” then “Daybook” else “Ledger Report”\

5. The Usage of $ and $$

5.1 Accessing a Method using $

Any information from an Object can be extracted by using a Method or UDF. The $ Prefix is used
to invoke or deploy the value from a Method or UDF of any Object, where the terms ‘Method’ and
‘Object’ are TDL-specific. This will be covered in greater depth in the sections to follow.

Context Fall Through for $

Check if it is an Internal method or UDF within the current object
User Defined Method

System Formula

o o o

o Change the context to parent object and repeat the above steps
Example:
[Field : My Field]

Set as : S$Name

This code snippet displays the value of the method ‘Name’ of the associated object.

5.2 Calling an Internal Function using $$

In TDL, functions are inbuilt and TDL Programmers can make use of the same. A function can
accept zero or more arguments to perform a specific task on the arguments and return a value.
While passing arguments to functions, spaces and special characters, except bracket (), are not
allowed. If the function parameter requires an expression, it can be enclosed within bracket (), so
as to return the result of the expression as a parameter to the Function.

Example:

[Field : Current Date]

Set as: $$MachineDate
[Field : Credit Amt]

Set as : if $$IsDr:$ClosingBalance then 0 else $ClosingBalance
[Field : StringPart Field]

Set as : $$StringPart ($SEmail:Company:##SVCurrentCompany) :0:5

33

Tty

Symbols and Prefixes POWER OF SIMPLICITY

6. Commenting a Code using ;, ;; and /**/

Commenting increases readability. In TDL, Comments can be given using symbol prefixes viz. ;, ;;
and /* */. Symbol Prefix ; is used for Part line commenting, ;; is used for Single Line Commenting
and /* */ is used for Multi Line Commenting. All the lines enclosed within /* and */ will be ignored
by the TDL Interpreter as a comment.

A Single Semi-Colon (;) is allowed as a comment for single line commenting, but as a standard
coding practice, it is recommended to use Double Semi-Colon (;;).

Example:
e
This code explains the usage of Multi-Line Commenting
as well as Single Line Commenting.
Y/
;; Altering Menu ‘Gateway of Tally’
[#Menu : Gateway of Tally]

Add : Key Item : Comment : C : Display: Comment

;- Menu ltem alteration ends here

7. Line Continuation Character (+)

A Line Continuation Character (+) is used to split a lengthy line into a number of shorter lines. By
doing this, the programmer can see the entire line without scrolling to the left or right. This can
also help in understanding and debugging the code faster.

Example:

/x

This code explains the mechanism of breaking a line into Multiple Lines using +
Y/

,; Altering Menu ‘Gateway of Tally’

[#Menu: Gateway of Tally]

Add : Key Item : Before : @Q@locQuit : +
LineCtn : C : Display : LineCtn : +

NOT SIsEmpty : $$SelectedCmps

8. Exposing Methods and Creating Procedures (_)

The Symbol Prefix (_) is used to expose Methods to ODBC. By prefixing _ to a Collection Name, it
turns into a procedure which can be referenced externally by passing the parameter as a
Variable.

Example:
;; Exposing Methods within the Objects to ODBC

34

Tty

POWER OF SIMPLICITY Symbols and Prefixes

[#0bject : Ledger]
_Difference : $ClosingBalance - $OpeningBalance

,; Creating Procedures to be referenced externally

[Collection : LedBills]
Type : Bills
Child of : #UName
SQLParms : UName

SQLValues : Bill No: S$Name

SQLValues : Bill Date : $$String:$BillDate:UniversalDate

9. Reinitialize Definitions (*)

This is similar to operators such as ‘# (Modify) and ‘' (Option). When “* is used for an existing
definition, all the attributes of the definition are overridden. This is very useful when there is a
need to completely replace the existing definition content with a new code.

Example:
[*Field : MyField]
Width : 20% Page
Set as : “This Field has been reinitialized”

10. Optional Definitions (!)

The Symbol Prefix ! is used to define optional definitions. ‘Switch’ and ‘Option’ are attributes
which can be used by various definitions like Menu, Form, Part, Line, Field, Collection, Button,
Key, Import File and Import Object to provide a conditional result in TDL. However, they cannot be
used with Report, Color, Style, Variable, System Formula, System Variable, System UDF, Border
and Object definitions.

The attributes of the original definition are overridden by the attributes of the optional definition
only if the Logical Condition is satisfied. In other words, if the Logical Condition returns TRUE, the
attributes of the optional definition become a part of the original definition, else they are ignored,
leaving the original definition intact.

Syntax
Option : <Optional Definition> : <Logical Condition>
Switch : Label : <Optional Definition> : <Logical Condition>

The difference between Switch and Option is that ‘Switch’ statements bearing the same label are
executed till a satisfying condition is found. On the contrary, ‘Option’ executes all the Option
statements matching the given conditions sequentially. Switch statements bearing different labels
are similar to Option statements, as all Switch statements will be executed for the given conditions.

35

Tty

Symbols and Prefixes POWER OF SIMPLICITY

Example - Option

[Line : MFTBDetails]
Fields : MFTBName
Right Fields : MFTBDrAmt, MFTBCrAmt
Option : MFTBDt1sClsgGl000 : S$SClosingBalance > 1000
Option : MFTBDt1sClsgLl1000 : S$ClosingBalance < 1000
[!Line : MFTBDtlsClsgGl000]
Local : Field : MFTBDrAmt : Style : Normal Bold
Local : Field : MFTBCrAmt : Style : Normal Bold
[!Line : MFTBDtlsClsgL1000]
Local : Field : MFTBDrAmt : Style : Normal
Local : Field : MFTBCrAmt : Style : Normal

In this code snippet, the condition specified in both the options will be checked, and the option

satisfying the given condition will be executed. In this case, there is a possibility that more than
one condition might be satisfied and get executed.

Example - Switch

[Line : MFTBDetails] Fields : MFTBName
Right Fields : MFTBDrAmt, MEFTBCrAmt
Switch : Case 1 : MFTBDtlsClsgGl000 : S$ClosingBalance > 1000
Switch : Case 1 : MFTBDtlsClsgLl000 : $ClosingBalance < 1000
[!Line : MFTBDtlsClsgGl000]
Local : Field : MFTBDrAmt : Style : Normal Bold
Local : Field : MFTBCrAmt : Style : Normal Bold
[!Line : MFTBDtlsClsgL1000]
Local : Field : MFTBDrAmt : Style : Normal
Local : Field : MFTBCrAmt : Style : Normal

In this code snippet, the condition specified in the switch statements will be checked one after

another. The first statement satisfying the given condition will be executed, and all other
statements grouped within the label ‘Case 1’ will not be executed further, unlike ‘Option’. The
behaviour similar to ‘Option’ can be achieved by specifying different labels, if required.

36

Tty

POWER OF SIMPLICITY Symbols and Prefixes

Learning Outcome

o

o

Access Specifiers and General symbols are the different special symbols used in TDL.

The Access Specifiers @ and @@ are used for accessing the values of Local and global
formula, respectively.

can be used for referencing a field or modifying the existing definition.
is used for accessing the value from a Local or Global variable.
$ is used for accessing a method or UDF and $$ is used for calling a function.

37

Tty

POWER OF SIMPLICITY

Dimensions and Formatting

Introduction

Dimensions are specifications. Dimensions in TDL are effective either in Display mode or in Print
mode. Data in TDL does not have an absolute position of the dimensions specified, but relative.
There are four definitions in TDL that attract dimensions. They are FORM, PART, LINE and
FIELD.

1. Unit of Measurement

A Unit of Measurement can be any of the following:
Millimeters/mms

Centimeters/cms

Inch(es)

Number of Characters/Number of Lines

% Screen/Page

Number — Points (where 1 Point = 1/72 Inch)

O O Oo o o O

2. Dimensional Attributes

Dimensional Attributes can be classified into two, i.e., Specific and General Attributes.

Definitions Specific Dimensions General Dimensions

Form Height, Width, Space Top, | HorizontalAlign,Vertical Align, Full
Space Bottom, Space Left, | Height, Full Width

Part Height, Width, Space Top, | Horizontal Align, Top Parts,
Space B_ottom, Space Left, | Bottom Parts, Left Parts, Right
Space Right Parts

Line Height,SpaceTop,Space FullHeight,TopLine, Bottom Line
Bottom, Indent

Field Width, Space Left, Space | Full Width, Left Field, Right Field,
Right, Indent Widespaced

Table 4.1 Dimensional Attributes
The various dimensional attributes are as shown in the Table 4.1
2.1 Sizing/Size Attributes
Height and Width

The attribute ‘Height’ is used to specify the Height required for the Form, Part and Line
Definitions, whereas the attribute ‘Width’ is used to specify the Width required for the Form, Part
and Field Definitions. The Height and Width can be specified in terms of any of the above Units

39

Tty

Dimensions and Formatting POWER OF SIMPLICITY

of Measurement. In the absence of any Unit of Measurement, the Height assumes a certain
number of lines and similarly, the Width assumes number of characters. The entire Height and
Width is in the proportion of the available paper/screen dimensions.

Syntax
Height : <Measurement Formula>

Width : <Measurement Formula>

Height and Width — Form Definition

The Height and Width, when specified in a ‘Form’ Definition, implies that it is the available Height
and Width which can be utilized by all the Parts, Lines and Fields within the Form. If the contents
of the Part and Line exceed the available Height and/or Width, the contents of the Form are
squeezed to accommodate the same within the available Height and Width. In the absence of any
Height and Width specified, the Form Definition assumes the Height and Width required by the
contents of the Form, comprising of Parts, Lines and Fields.

Example:
Height : 10 inch

width : 8.50 inch

Height and Width — Part Definition

Subsequently, Height and Width, when specified in a ‘Part’ Definition, implies that it is the
available Height and Width that can be utilized by all its Sub-Parts, Lines and Fields. If the
contents of the Sub-Parts, Lines and Fields exceed the available Height and Width, the contents
of the Part are squeezed to accommodate the same within the available Height and Width.

Example:

Height : 10% Page
Width : 60% Page

Height — Line Definition
Similarly, the Height, when specified within a ‘Line’ Definition, restricts the contents of the Lines to

the available Line Height. Generally, specifying the Line Height is not required since the contents
of the lines are controlled by the given Part Height.

Width — Field Definition

The Width, when specified within a Field Definition, limits the contents of the Field within the
defined boundary. If the contents are longer than the available Width, the Field contents are
squeezed to accommodate the same within the defined width.

FullHeight and FullWidth

The Attribute ‘FullHeight' can be specified in a Form or a Line Definition, and the Attribute
‘FullWidth’ can be specified in a Form or a Field Definition. ‘FullHeight’ is used to instruct the Form
or the Line to utilize the full Height, while ‘FullWidth’ is used to instruct the Form or the Field to
utilize the full Width.

40

Tty

POWER OF SIMPLICITY Dimensions and Formatting
Syntax
FullHeight : <Logical Value>
FullWidth : <Logical Value>
Example:

FullHeight : No
FullWwidth : No

FullHeight and FullWidth — Form Definition

The attribute ‘FullHeight' decides whether to allow the form to consume the full Height or not,
depending on the logical value set. By default, the value set for this attribute is YES. If the current
Form uses Bottom Parts or Bottom Lines, then the Height required/utilized by the Form will be
100% Page/Screen.

Similarly, the attribute ‘FullWidth’ decides whether to allow the Form to consume the full Width or
not, depending on the logical value set. By default, the value set for this attribute is YES. If the
current Form uses the Right Parts or Right Lines, then the Width required/utilized by the Form will
be 100% Page/Screen.

FullHeight — Line Definition

The attribute ‘FullHeight' decides whether the line can consume the full available Height or not,
depending on the logical value set. By default, the value set to this attribute is YES.

FullWidth — Field Definition
The attribute ‘FullWidth’ decides whether the Field can consume the full available Width or not,
depending on the logical value set. By default, the value set to this attribute is YES.

2.2 Spacing/Position Attributes

Space Top, Space Bottom, Space Left and Space Right

Attributes Space Top, Space Bottom, Space Left and Space Right are used to specify the spaces to
be kept to the Top, Bottom, Left and Right of the Definition. Space Top and Space Bottom can be
used in Form, Part and Line Definitions. Space Left and Space Right can be used in Form, Part and
Field Definitions.

When Space Top, Space Bottom, Space Left and Space Right are used in a definition, these
spaces are included in the Height and Width specified within the definition.

Syntax
Space Top : <Measurement Formula>
Space Bottom : <Measurement Formula>
Space Left : <Measurement Formula>
Space Right : <Measurement Formula>
Example:
Space Top : 1.5 inch

Space Bottom : If ($$IsStockdJrnl:##SVVoucherType OR +

$$IsPhysStock: ##SVVoucherType) then 0 else 0.25

41

Tty

Dimensions and Formatting POWER OF SIMPLICITY
Space Left : @@DSPCondQtySL + @@DSPCondRateSL + @@DSPCondAmtSL
Space Right : 1

Space Top, Space Bottom, Space Left and Space Right — Form/Part Definition

The attributes Space Top, Space Bottom, Space Left and Space Right are specified in a Form or a
Part Definition, by leaving the appropriate spaces before displaying/printing a Form. These
spaces are included in the Height/Width of the Form Definition.

Space Top and Space Bottom — Line Definition

The attributes Space Top and Space Bottom, when specified in a Line Definition, leave the
appropriate spaces before/after the Line. These spaces are inclusive within the Height of the
specific Part in which the current Line Definition resides. If the Height of the Part is unable to
accommodate the same, it compresses the line to fit it within the available Height.

Space Left and Space Right — Field Definition

The attributes Space Left and Space Right, when specified in a ‘Field’ Definition, leave the
appropriate spaces before/after the Field. These spaces are inclusive within the Width of the Part
and Field. If the Width of the Part is unable to accommodate the same, it compresses the Fields
within the Parts and Lines, to fit it within the available Width.

Indent

An Indent can be specified either in a Line or a Field Definition. It is similar to the Tab Key which is
used to specify a starting point for a Line or a Field.

Syntax
Indent : <Measurement Formula>
Example:
Indent : @@IndentByLevel

Indent — Line Definition

This attribute in the Line Definition specifies the space to be left from the Left margin before the
contents of the line begin.

Indent — Field Definition

This attribute in the Field Definition is similar to the Space Left attribute, except that it indents the
field independent of width of the field. Space Left indents the field within the width available.
However, Indent indents the field exclusive of the width. It can either take a formula as a parameter,
or the expression itself. The formula can decide as to what extent each instance of the field has
to be indented from the initial place. This attribute is typically used while displaying reports like
List of Accounts, Trial Balance, etc., where the groups and ledgers under a particular group are
recursively indented inside the group, based on the order of the groups and ledgers.

2.3 Alignment Attributes

Top Parts, Bottom Parts, Left Parts and Right Parts

These attributes are used to place different parts at different positions in a particular Form or Part.
The attributes ‘Top Parts’ and ‘Bottom Parts’ can be specified in ‘Form’ as well as ‘Part’

42

Tty

POWER OF SIMPLICITY Dimensions and Formatting

Definitions, whereas attributes ‘Left Parts’ and ‘Right Parts’ can be specified only in the ‘Part’
Definition.

Syntax
Top Parts : <Partl, Part2, ...>
Bottom Parts : <Partl, Part2, ...>
Left Parts : <Partl, Part2, ...>
;; Only for Part Definition
Right Parts : <Partl, Part2, ...>
;; Only for Part Definition
Example:
Top Parts : ACLSFixedLed, TDSAutoDetails
Bottom Parts : PJR Sign
Left Parts : EXPINV Declaration

;; Attribute ‘Left Parts’ can be used only for ‘Part’ Definition
Right Parts : STKVCH Address

;; Attribute ‘Right Parts’ can be used only for ‘Part’ Definition
Top Parts and Bottom Parts — Form Definition

In cases where the Top Part or Bottom Part is specified within a Form Definition, it occupies the
Top Section or Bottom Section of the Form respectively, keeping in account the Space Top and
Space Bottom of the Form. The attribute Space Bottom impacts the Bottom Parts by moving them
from the bottom, in order to leave appropriate spaces. Similarly, Space Top impacts the Top Parts
by moving them from the top, in order to leave appropriate spaces. The Bottom Parts/Bottom
Lines start printing from bottom to the top of the Form. If Height is specified at the Form Definition,
then the Bottom Parts/Lines start printing from the bottommost line within the specified Height.

Top Parts, Bottom Parts, Left Parts and Right Parts — Part Definition

In cases where the Left Part or Right Part is specified within a Part Definition, it occupies the Left
Section or Right Section of the Part respectively, keeping in view the Space Left and Space Right of
the Part. The attribute Space Right impacts the Right Parts by moving them from Right, in order to
leave appropriate spaces. Similarly, Space Left impacts the Left Parts by moving them from

Left, in order to leave appropriate spaces. If the intent is to have multiple parts printed horizontally,
then the Part Attribute “Vertical’ should be set to NO. In cases where the ‘Vertical’ Attribute is set
to YES, all the parts within this part will be printed vertically. In such cases, the Left Parts will
position at the Top of the Screen/Page and the Right Parts at the Bottom of the Screen/Page.

In cases where the Top Part or Bottom Part is specified within a Part Definition, it occupies the Top
Section or Bottom Section of the Part respectively, keeping Space Top and Space Bottom of the
Part in account. The attribute Space Bottom impacts the Bottom Parts by moving them from the
bottom in order to leave appropriate space. Similarly, the attribute Space Top impacts the Top
Parts by moving them from the Top in order to leave appropriate spaces. If the intent is to have
multiple parts printed vertically, then the Part Attribute Vertical should be set to Yes. If the Vertical
Attribute is set to No, then all the parts within this part will be printed horizontally. In such

43

Tty

Dimensions and Formatting POWER OF SIMPLICITY

circumstances, the Top Parts will be positioned at the Left of the Screen/Page while the Bottom
Parts are positioned at the Right of the Screen/Page.

e Both Parts and Lines are not allowed together within a Part. They are mutually
oteS exclusive entities. Either Parts or Lines can be specified at a time, within a Part.

Top Lines and Bottom Lines

These attributes are used to place different lines at different positions in a particular ‘Part’
Definition. The attributes “Top Lines’ and ‘Bottom Lines’ can be specified in a Part Definition.
However, the attributes Top Lines/Lines can only be used in a Line and Field Definition.

Syntax
Top Lines : <Linel, Line2,....>
Bottom Lines : <Linel, Line2,....>
Example:
Top Lines : Form SubTitle, CMP Action
Bottom Lines : VCHTAXBILL Total

Top Lines and Bottom Lines — Part Definition

Attribute “Top Lines’ is used to place lines at the top, while attribute ‘Bottom Lines’ is used to place
lines at the bottom of the Part, with respect to the Height specified within the ‘Part’ Definition.

Left Field and Right Field

The attribute ‘Left Fields’ can be specified in both Line and Field Definition whereas the attribute
‘Right Fields’ can only be specified in a Line Definition.

Syntax
Left Fields : <Fieldl, Field2, ...>
Right Fields : <Fieldl, Field2, ...>
Example:
Left Fields : Medium Prompt, Chg SVDate, Chg VchDate
Right Fields : Trader TypeofPurchase, Trader QtyUtilisedTotal

Left Fields and Right Fields — Line Definition

The attribute ‘Left Fields’ and ‘Right Fields’ specified in a ‘Line’ Definition, places the fields at their
respective position. ‘Left Fields’ starts printing from the Left to the Right of the Line, while ‘Right
Fields’ starts printing from the Right to the Left of the Line. If ‘Repeat’ Attribute is used in a Line,
specification of ‘Right Fields’ is not allowed, as by default, the ‘Repeat’ Attribute places the Field
specified to the Right of the Screen/Page.

Left Fields/Fields — Field Definition

44

Tty

POWER OF SIMPLICITY Dimensions and Formatting

The attribute ‘Field’ is used to create fields containing one or more fields, like Group fields. We
can create multiple fields inside a single field, using the ‘Fields’ attribute. The attribute ‘Fields’ is
useful when multiple Fields are required to be repeated in a Line. For example, in case of a Trial
Balance, two Fields, i.e., Debits and Credits, are required to be repeated together if a new column
is added by a user. The new column thus added, should again contain both these fields, i.e., Debit
and Credit. In a Line Definition, only one Field can be repeated. So, a Field is required within a
Field if more than one field requires to be repeated.
Align
The attribute ‘Align’ aligns the contents of a Field as specified. The permissible values for this
attribute are Left, Center, Right, Justified and Prompt.
Syntax

Align : <String Value>
Example:

Align : Right

Horizontal Align and Vertical Align

‘Horizontal Align’ sets the alignment of the Form or Part horizontally while ‘Vertical align’ sets the
alignment of the Form vertically.

Syntax
Horizontal Align : <Logical Value>
Vertical Align : <Logical Value>
Example:
Horizontal Align : Right
Vertical Align : Bottom
;; Only for Form Definition

The alignment of the Form or Part across the width of the page is set by the attribute ‘Horizontal
Align’. The default alignment of the Form and Part is in the Centre of the screen, and on the Left
on printing. Depending on the width of the Form and page, the Form or Part will be displayed or
printed, leaving equal amount of space on the left and right of the Form.

The alignment of the Form across the height of the page is set by the attribute ‘Vertical Align’. The
default alignment of the Form is Centre of the screen, and Top on print. Depending on the height
of the form and page, the form will be displayed or printed, leaving equal amount of space on the
top and bottom of the form.

Widespaced

This attribute is used in a ‘Field’ Definition to allow increased spacing between the characters of
the string value specified in the field. It is used to create titles for the report/columns.

Syntax
Widespaced : <Logical Value>
Example:

Widespaced : Yes

45

Tty

Dimensions and Formatting POWER OF SIMPLICITY

3. Some Specific Attributes

3.1 Inactive

The ‘Inactive’ attribute can be used in both a Field Definition and a Button Definition. When the
attribute Inactive is set to YES in a Field Definition, the Field loses its content but the size of the
Field remains intact. In cases where a ‘Button’ Definition is used, the Button becomes Inactive.

Syntax
Inactive : <Logical Formula>
Example:

[Field : TBCrAmount]
Set as : $ClosingBalance
Inactive : $$IsDr:$ClosingBalance

In this example, the Field TBCrAmount is used to display the Credit Amount of the Ledger in a
Trial Balance. When the Ledger Balance is Debit, the amount should not be displayed in the
Credit Column but the Width should be utilized to avoid the Debit Field being shifted to the Credit
Field. The Credit Totals to be calculated and displayed will also exclude the Debit Amount.

3.2 Invisible

This attribute can be specified in a Part, Line or a Field Definition. Based on the logical condition,
this attribute decides whether the contents of the definition should be displayed or not. When this
attribute is set to YES, it does not display the contents, but the contents are retained for further
processing. In this case, contrary to ‘Inactive’, the size of the entire field is reduced to null, but the
value is retained.

Syntax

Invisible : <Logical Formula>

Invisible — Field Definition

The ‘Invisible’ attribute, when specified in a Field, denotes that the current field is excluded from
all the further processing, based on satisfying a certain condition.

Example:

[Field : Attr Invisible]
Set as : “Invisible Attribute”
Invisible : Yes

In this example, the Field attribute ‘Invisible’ is used to display Credit Amount of the Ledger in a
Trial Balance. When the Ledger Balance is debit, the amount should not be displayed/printed in

46

Tty

POWER OF SIMPLICITY Dimensions and Formatting

the Credit Column and the Width is not utilized allowing the other fields to utilize the space. The
Credit Totals being calculated and printed will also exclude the Debit Amount.

i

(o8 In a Report, at least one Part, Line and Field should be visible.
0

4. Definitions and Attributes for Formatting
4.1 Definition - Border

The Definition ‘Border’ determines the type of lines required in a border which can be used by a
Part, Line or a Field; which means that this definition can define customized borders for the user.
But, it is ideal to use predefined borders, which are part of default TDL, instead of user defined
ones, since almost all possible border combinations are already defined in the Default TDL.

Syntax

[Border : <Border Name>]

Top : <Values separated by a comma>

Bottom : <Values separated by a comma>

Left : <Values separated by a comma>

Right : <Values separated by a comma>

Color : <Color Name - B&W, Color Name - Color>
PrintFG : <Color Name>

Attributes - Top, Bottom, Left and Right

The Top, Bottom, Left and Right attributes in a ‘Border’ Definition are used to add appropriate
lines which constitute the Border defined. The permissible values for these attributes are:

o Thin/Thick: This specifies whether the Line should be thin or thick.
o Flush: The border includes the spaces on the Top, Bottom, Left or Right.

o Full Length: This ignores the space given at the Top, Bottom, Left or Right and prints
the border for the whole length.

o Double: It forces double line to be printed. In its absence, single line is assumed.
Example:

[Border : Thin Bottom Right Double]
Bottom : Thin, Flush, Full Length
Right : Thin, Double

[Field : Total Field]

Set AS : $Total

Border : Thin Bottom Right Double

a7

Tty

Dimensions and Formatting POWER OF SIMPLICITY

Attribute - Color

The ‘Color’ attribute of the ‘Border’ Definition is used to specify the Color required for the border in
‘Display’ mode. In a ‘Border’ definition, the attribute ‘Color’ requires two values to be specified,
viz. First value for a Black and White Monitor, and the second for a Color monitor.

[Border : Top Bottom Colored]

Top : Thin
Bottom : Thin
Color : "Deep Grey, LeafGreen"

[Field : Total Field]
Set AS : STotal

Border : Top Bottom Colored

Attribute - PrintFG

This attribute is used to specify the Color required for the border during printing.

[Border : Top Bottom Colored]

Top : Thin

Bottom : Thin

Color : "Deep Grey, Leaf Green"
Print FG : “Leaf Green”

[Field : Total Field]
Set AS : $STotal

Border : Top Bottom Colored

4.2 Definition - Style

The Definition ‘Style’ can be used in the ‘Field’ Definition only. This definition determines the
appearance of the text being displayed/printed, by using a corresponding font scheme, i.e., Bold,
Italic, Point Size, Font Name, etc. The ‘Style’ attribute in ‘Field’ Definition is used to format the
appearance of the text appearing within the Field, both in Display and Print mode, provided the
‘Print Style’ attribute is not used within the current Field. The ‘Print Style’ attribute is used in Field, if
the Style required while displaying is different from the Style required while printing.

Syntax
[Style : <Style Name>]

Font :
Height : <required Font Height in Point Size>
Bold : <Logical Formula>

48

Tty

POWER OF SIMPLICITY Dimensions and Formatting

Italic : <Logical Formula>

Attribute - Font

It is a generic Font name supported by the Operating System. A Font is system dependent and
we don’t have any control over them. One can only select the required fonts from those available.

Example:
[Style : Normal]

Font : if $$IsWindows then "Arial" else "Helvetica"
Height : @@NormalSize
[Style : Normal Bold]
Use : Normal
Bold : Yes

[Field : Party Name]

Set AS : $PartylLedgerName
Style : Normal
Print Style : Normal Bold

Attribute - Height

This attribute should be specified without any measurement, since it is always measured in terms
of Points. It can have value as a fraction, or as a formula which returns a number. One can also
grow or shrink the Height by a multiplication factor or percentage.

Example:
[Style : Normal Large]
Use : Normal

Height : Grow 25%

Attribute - Bold

The attribute ‘Bold’ can only take logical values/formula. In other words, it can take either a YES or
NO. It signifies that the field using this Style should be printed in Bold.

Example:
[Style : Normal Bold Large]
Use : Normal Large

Bold : Yes

Attribute - Italic

49

Tty

Dimensions and Formatting POWER OF SIMPLICITY

The attribute ‘ltalic’ can only take logical values/formula. In other words, it can be set to either
YES or NO. It signifies that the Field using this Style should be printed in Italics.

Example:

[Style : Normal Large Italics]
Use : Normal Large

Italic : Yes

4.3 Definition - Color

The definition ‘Color’ is useful to determine the Foreground and Background Color for a Form,
Part, Field or Border, in Display as well as in Print Mode. A Color specification can be done by
specifying the RGB Values (the combination of Red, Green and Blue - each value should range
from 0 to 255).

Syntax
[Color : <Color Name>]
RGB : <Red>, <Green>, <Blue>

Attribute - RGB

This is the second way of specifying color. One can specify the RGB value from a palette of 256
colors to obtain the required color, i.e., the values Red, Green and Blue can each range from 0 to

255. This gives the user the option to select from the wide range of 24 bit colors.

Example:
[Color : Pale Leaf Green]
RGB : 169, 211, 211
[Field : Party Name]
Set as : SPartyLedgerName
Color : Pale Leaf Green
Print FG : Pale Leaf Green

4.4 Attributes ‘Background’ and ‘Print BG’

The attribute ‘Background’ is used to set the Background Color of a Form, Part or a Field in
Display mode. The ‘Print BG’ attribute is used to set the Background Color of a Form, Part or a
Field in Print mode.

Syntax
[Form : <Form Name>]
Background : <Color Name Formula>
Print BG : < Color Name Formula>

[Part : <Part Name>]

50

Tty

POWER OF SIMPLICITY Dimensions and Formatting

Background : <Color Name Formula>
Print BG : <Color Name Formula>
[Field : <Field Name>]
Background : <Color Name Formula>
Print BG : <Color Name Formula>
Example:

[Form : Salary Detail Configuration]

Background : @E@SV_CMPCONFIG
[Part : Party Details]

Background : Red Print BG: Green
[Field : Party Ledger Name]

Background : Yellow

Print BG : Red

4.5 Attribute - Format

The attribute ‘Format’ is used in the Field definition. It determines the Format of the value being
displayed/printed within the Field.

Syntax
[Field : <Field Name>]

Format : <Formatting Values separated by comma>
The value for the Attribute ‘Format’ varies, based on the data type of the Field.
Field of Type ‘Number’
Example:

[Field : My Rate of Excise]
Set AS : SBasicRateOfInvoiceTax

Format : “No Comma, Percentage”

Field of Type ‘Date’
Example:

[Field : Voucher Date]
Set AS : SDate

Format : “Short Date”

Field of Type ‘Amount’

51

Tty

Dimensions and Formatting POWER OF SIMPLICITY

Example:

[Field : Bill Amount]
Set AS : SAmount
Format : “No Zero, No Symbol”

Field of Type ‘Quantity’
Example:
[Field : Bill Qty]

Set AS : $BilledQty
Format : “No Zero, Short Form, No Compact”

Learning Outcome
o The following four definitions in TDL attract dimensions:

= Form
| Part
= Line
= Field

o InTDL, Dimensional attributes are used for specifying the dimensions.

o The Definition ‘Style’ determines the appearance of the text being displayed/printed by
using the corresponding Font scheme, i.e., Bold, Italic, Point Size, Font Name, etc.

o The Definition ‘Color’ is useful to determine the Foreground and Background color for a
Form, Part, Field or Border, in Display as well as Print Mode.

o The attribute ‘Format’ is used in the Field Definition. It determines the Format of the value
being displayed/printed within the Field.

52

Tty

POWER OF SIMPLICITY

Variables, Buttons and Keys

Introduction

A Variable is a storage location or an entity. It is a value that can change, depending on the
conditions or on the information passed to the program.

The actions in TDL can be delivered in three ways: by activating a Menu Item, by pressing a Key
or by activating a Button.

The definitions of both Buttons and Keys are the same, but at the time of deployment, Keys differ
from Buttons.

1. Variable

In TDL, a Variable is one of the important definitions, since it helps to control the behaviour of
Reports and their contents. Variables assume different values during execution and these values
affect the behaviour of the Reports.

A Variable definition is similar to any other definition.

Syntax
[Variable : <Variable Name>]
Attribute : Value
A Variable should be given a meaningful name which determines its purpose.

1.1 Attributes of a Variable

The attributes of a Variable determine its nature and behaviour. Some of the widely used
attributes are discussed below:

Type

This attribute determines the Type of the value that will be held by the variable. The Types of
values that a variable can handle are String, Logical, Date and Number. In the absence of this
attribute, a variable assumes to be of the Type String, by default.

Syntax
[Variable : <Variable Name>]
Type : <Data Type>
Example:
[Variable : ICFG Supplementary]

Type : Logical

A logical variable ICFG Supplementary is defined and used to control the behaviour of certain
reports, based on its logical value, as configured by the user.

55

Tty

Variables, Buttons and Keys POWER OF SIMPLICITY
Default
This attribute is used to assign a default value to a variable, based on the “Type’ defined.
Syntax
[Variable : <Variable Name>]

Default : <Initial Value>

Value of the variable should adhere to the data type specified with “Type’ Attribute.
Example:

[Variable : DSP HasColumnTotal]
Type : Logical
Default : Yes

The Default Initial Value for the logical Variable DSP HasColumnTotal is set to YES. This variable
will begin with an initial value YES in the Reports, unless overridden by the System Formula. We
will learn about the System Formula in the coming sections.

Persistent

This attribute decides the retention periodicity of the attribute. If the attribute ‘Persistent’ is set to
YES, then the latest value of the variable will be retained across the sessions, provided the
variable is not a local variable.

We will learn about the concept of local and global variables shortly.
Syntax
[Variable : <Variable Name>]
Persistent : <Logical Value>
Example:
[Variable : SV Backup Path]

Type : String
Persistent : Yes

The attribute ‘Persistent’ of the variable SV Backup Path has been set to YES, which means that it
retains the latest path given by the user even during the concurrent sessions of Tally.

Volatile

In cases where the ‘Volatile’ attribute in the Variable definition is set to YES, the variable is
capable of retaining multiple values, i.e., its original value with its subsequent values, are stored
as a stack. The default value of this attribute is YES.

In cases where a new report R2 is initiated, using a volatile variable V, from the current report R1,
the current value of the volatile variable will be saved as in a stack, and the variable can assume a
new value in the new report R2. Once the previous report R1 is returned back from the report R2,
the previous value of the variable will be restored. A classic example of this is a drill-down Trial
Balance.

56

Tty

POWER OF SIMPLICITY Variable, Buttons and Keys

Syntax
[Variable : <Variable Name>]
Volatile : <Logical Value>

Example:
[Variable : GroupName]
Type : String
Volatile : Yes

The ‘Volatile’ attribute of Group Name Variable is set to YES, which means that the variable
‘Group Name’ can store multiple values, which have been received from multiple reports.

Repeat

This attribute is mainly used to achieve the Auto Column behaviour in various Reports. Each
Column is created with a subsequent Object in a Collection automatically, till all the columns
required for Auto Columns exhaust. The ‘Repeat’ attribute has its value as a variable which has
the collection of Objects, for which the columns need to be generated. Every time the Repeat is
executed, the column for the subsequent Object is added.

Syntax
[Variable : <Variable Name>]

Repeat : <Variable Value>
Example:

[Variable : SV FromDate]

Type : Date
Volatile : Yes
Repeat : ##DSPRepeatCollection

##DSPRepeatCollection Variable receives the Collection Name from a Child Report, which
accepts inputs from the user regarding the columns required. Variable SVFromDate gets
repeated over the subsequent period in the Collection each time the column repeats.

1.2 The Scope of a Variable

The scope of a Variable can be broadly classified as follows:
o Local
o Global
o Field acting as a variable

Local

A Variable is termed as a local variable when it is associated to a Report. This means that the
scope of the variable covers only the current report and its components. It is not mandatory for
local variables to have an initial value.

57

Tty

Variables, Buttons and Keys POWER OF SIMPLICITY

Syntax
[Report : <Report Name>]
Variable : <Variable Name>
Example:

[Report : Balance Sheet]
Variable : Explode Flag

Explode Flag Variable is made local to the Report ‘Balance Sheet’ by associating it using the

Report attribute ‘Variable’.This variable retains its value as long as we work with this Report. On
exiting the Report, the original value if given, is returned and the value modified within this report
is lost. For example, consider a situation where ‘Stock Summary’ Report is being viewed with
Opening, Inwards, Outwards and Closing Columns enabled through Configuration settings. Once
we quit this Report and re-enter the Report, the variables return to the default settings.

Global

A variable is termed as Global variable when it is defined under System Variable section. It means
that the scope of the variable covers all reports. An initial value is mandatory for global variables.

A Global Variable can also be made local to a Report by associating it to a Report, as

/Vo 108 discussed in Local Variables above.

Syntax
[System : Variable]

Variable : <Initial Type Based Value>
Example:
[System : Variable]

BSVerticalFlag : No

The BSVerticalFlag Variable is made Global. Hence, this variable value being modified in a
Report is retained, even after we quit and re-enter the Report. The retention of a Global Variable
can be done on two levels, i.e., either within the current session or across the sessions. If the
Variable attribute ‘Persistent’ is set to YES, then the modified variable value is retained across
the sessions, else the value defaults back to initial value on re-entering another session of Tally.

All the Persistent Variable Values are stored in a File Named TallySav.Cfg, in the
i 4 folder path specified in Tallyini. Each time Tally is restarted, these variable
NoteS values are accessed from this file.

58

Tty

POWER OF SIMPLICITY Variable, Buttons and Keys

Field Acting as a Variable

The Variable attribute in a ‘Field’ Definition is used to make the Field behave as a Variable. when
value is entered/altered in a Field, the variable assumes the same value with immediate effect.
The Variable need not be defined previously, since it inherits its data type from the Field itself.

For example, in a Trial Balance Report, which is a drill down report, there is a need to retain the
Group Name which has been selected by the user. So, each time the user scrolls up and down,
the field value changes and the current field value is passed on to the variable immediately, so
that if the current group is selected and drilled down, the report begins with the sub groups and
ledgers of the selected group.

3 The Variables used in a Field Acting as a Variable are local variables, and are local
otes to the Report.

Syntax
[Field : <Field Name>]
Variable : <Variable Name>
Example:
[!Field : DSP Group Acc]

Variable : Group Name

This is used in the ‘List of Accounts’ Report in Tally.ERP 9, wherein the optional Field DSP Group
Acc is made to act as a variable by using the Field attribute ‘Variable’, and the value selected by
the user is passed on to this variable for further use.

1.3 Modifying the Variable Value
A Field attribute Modifies is used to modify the value of a variable.

Syntax
[Field : <Field Name>]

Modifies : <Variable Name>
Example:
[Field : SLedger]

Modifies : SLedger

The SLedger Variable is modified with the value stored/keyed in the Field SLedger

59

Tty

Variables, Buttons and Keys POWER OF SIMPLICITY

1.4 Example - Variables
The following code snippet explains the usage of Local variable.

[Variable : LocVar]
Type : String
Default : "This is the default value"

;. Variable LocVar of Type String is defined and it is assigned a Default Value

[Report : Local Variable]
Variable : LocVar

;. At this point, Variable LocVar becomes a Local Variable for this Report
[Field : Local Variable Field]

Set As : "This is a Local Variable in Report"
Modifies : LocVar

., Here, the variable value is modified with the Field contents specified in ‘Set As’

In this code snippet, a local variable LocVar is defined and locally attached to the Report ‘Local
Variable’. This Report modifies the Variable Value to ‘This is a Local Variable in Report’. Once
we exit from this Report, the value of the variable locvar modified in this Report is lost.

2. Buttons and Keys

The actions in TDL can be delivered in three ways - by activating a Menu Item, by pressing a Key
or by activating a Button.

The definition of both Buttons and Keys are the same, but at the time of deployment, Keys differ
from Buttons.

All the Buttons used within the attribute ‘Buttons’ are visible on the button bar, so that the user can
either click it or press the unique key combination. All the Buttons used within the attribute ‘Keys’
are invisible entities and the key combination associated in the Key must be pressed to activate a
key; whereas to activate a button, either it can be clicked or the key combination assigned for the
button can be pressed.

60

Tty

POWER OF SIMPLICITY Variable, Buttons and Keys

2.1 Attributes of Buttons/Keys
Title

The ‘Title’ attribute can be used to give a meaningful Title to the Button being displayed on the
Button Bar. This attribute is optional.

In case the Title is not specified, then by default, it assumes the Button Name as its
e 4 title. In cases where it is used as a Key, the Title is ignored, since the Keys are
NoteS hidden in a Menu or a Report.

Syntax
[Key/Button : <Key/Button Name>]
Title : <Button Title>
Example:

[Button : NonColumnar]
Title : “No Columns”

Key/Keys

This attribute is used to give a unique key combination, which can be activated by pressing the
same from any Report or Menu. This attribute is mandatory if action is specified in this definition.

Syntax
[Key/Button : <Key/Button Name>]
Key : <Combination of Keys>
Example:

[Button : NonColumnar]
Key : Alt + F5

Action

The Action attribute is used to associate an Action with the Button. Every Button or Key is
defined for the purpose of executing certain predefined actions.

Syntax
[Key/Button : <Key/Button Name>]
Action : <Required Action>
Example:

[Button : NonColumnar]

Action : Set : ColumnarDayBook : NOT ##ColumnarDayBook

61

Tty

Variables, Buttons and Keys POWER OF SIMPLICITY

Inactive

The Inactive attribute is used to activate the Button, based on some condition. If the condition is
FALSE, the button will be displayed, but it cannot be activated.

Syntax
[Key/Button : <Key/Button Name>]
Inactive : <Logical Condition>
Example:

[Button : Close Company]
Inactive : $$SelectedCmps < 1

Learning Outcome

o A variable is a storage location or an entity. It is a value that can change, depending
either on the conditions or on the information passed on to the program.

o The Variable attribute “Type’ determines the Type of value that will be held within it.

o The attribute ‘Default’ is used to assign a default value to a variable, based on the “Type’
defined.

o The attribute ‘Persistent’ decides the retention periodicity of the attribute.
o The attribute ‘Modifies’ in a Field definition is used to modify the value of a variable.
o ‘Title’, ‘Key’, ‘Action’ and ‘Inactive’ are the attributes of ‘Button’ definition.

62

Tty

POWER OF SIMPLICITY

Objects and Collections

Introduction

In the previous lesson, the usage of Variables, Buttons and Keys were explained. In this lesson,
the concept of ‘Objects’ and ‘Collections’ will be discussed in detail. Let us try to understand what
an object is in general, its importance and usage in TDL.

1. Objects

Any information that is stored in a computer is referred to as Data. Database is a collection of
information organized in such a way that a computer program can quickly select desired data. A
database can be considered as an electronic filing system. To access information from a
database, a Database Management System (DBMS) is used. DBMS allows to enter, organize,
and select data in a database.

The organization of data in a database is referred to as the ‘Database Structure’. The widely used
database structures are hierarchical, relational, network and object-oriented.

In the hierarchical structure the data is arranged in a tree-like structure. This structure uses the
parent—child relationships to store repeating information. A parent can have multiple children, but a
child can have only one parent. The child in turn can have multiple children. Information related to
one entity is referred to as an object. A database is a group of interrelated objects.

An object is a self-contained entity that consists of both data, and procedures to manipulate the
data. It is defined as an independent entity, based on its properties and behaviour/functionality.
Objects are stored in a data base.

A relationship can be created between the objects. As discussed, the hierarchical structure has a
parent-child relationship. For example, child objects can inherit characteristics from parent
objects. Likewise, a child object can not exist without a parent object.

After discussing the object concept in general, let us examine the Tally object structure in the
following section.

1.1 Tally Object Structure

The Tally data base is hierarchical in nature, in which the objects are stored in a tree-like
structure. Each node in the tree can be a tree in itself. An object in Tally is composed of methods
and collections. Method is used to retrieve data from the database. A collection is a group of
objects. Each object in the collection can further have methods and collections. The structure is as
shown in Figure 6.1.

63

Tty

Objects and Collections POWER OF SIMPLICITY
objects
— Methods
- ‘ Level 1 ‘
Collection
objects 1
Methods
‘ Level 1 ‘
Collection
|
|
|
- ‘ Level n ‘

——— objects 2
Methods

Collection

objects n

Methods

Collection

Figure 6.1 Tally Object Structure

Everything in TDL is an Object. As mentioned in the earlier chapters, Report, Menu, Company,
Ledger, etc., all are objects in TDL. The properties of objects in TDL are called Attributes. For
example, the attributes ‘Object’, ‘Title’, ‘Form’ are all properties that define the ‘Report’ object.

An object can have Methods and Collections, as mentioned earlier. For example, the Object
‘Ledger’ contains the Methods ‘Name’, ‘Parent’, etc., and the collections ‘Address’ and
‘BillwiseDetails’.

As shown in the Figure 6.1, the Objects available at Level 1 are referred to as Primary objects and
objects which are at Level 2-n are referred to as Secondary objects.

Two different types of objects are available in TDL. The following section describes the
classification of objects in TDL.

64

Tty

POWER OF SIMPLICITY Objects and Collections

1.2 Tally Objects Types

Objects in TDL are classified into two types, based on the their usage and behaviour, as follows:
o Interface Objects
o Data Objects

Interface objects define the user interface while Data objects store the value in the Tally Primary
or Secondary database. Any data manipulation operation on the data object is performed through
Interface objects only. Figure 6.2 shows the classification of objects in TDL.

Interface Objects Data Objects

Internal Objects TDL Objects

StaticTDL Objects/ Hard | Dynamic TDL Objects/ Form |
Coded . other data sources

Figure 6.2 Classification of Objects

Interface Objects

Objects used for designing the User Interface are referred to as Interface objects. Report, Form,
Menu, etc., are interface objects. Interface objects like Report and Menu are independent items
and can exist on their own. The objects Form, Part, Line, Field can’t exist independently. They
must follow the containment hierarchy as mentioned in the section ‘Basic TDL Structure’ of
Lesson 2 — ‘TDL Components’.

Example:
[Field : Sample F1d]

Width : 22
[Line : Sample Ln]

Field : Name Field

65

Tty

Objects and Collections POWER OF SIMPLICITY

TDL allows a re-usage of all the objects.There are two ways to obtain some more properties that
are required in an object:

o The existing object can either be used in new objects or in lieu of defining a new object.
o The existing object can be modified to add new properties.

The interface objects can be shared by other interface objects. For example, a single field can be
used in multiple lines. The following examples describe the discussed scenarios:

Example: 1
[Field : Sample F1d]
Width : 22
Set As : “TDL Demo”

[#Field : Sample F1d]
Style : Normal Bold

The field Sample Fld will have both the properties. The width of the field is 22 and text is
displayed using the style Normal Bold.

Example: 2
[Field : Sample F1d]

width : 22

Set As : “TDL Demo”
[Field : Sample F1ldl]

Use : Sample Fld

Style : Normal Bold

The field Sample Fld1 will have both the properties. The width of the field is 22 and the text is
displayed using the style Normal Bold.

Example: 3

[Line : TitleA]

Field : Name Field
[Line : TitleB]

Field : Name Field

The field Name Field is used in both the lines TitleA and TitleB.

A set of available attributes of interface objects are predefined by the platform. A new attribute
can not be created for an interface object.

66

Tty

POWER OF SIMPLICITY Objects and Collections

Interface objects are always associated with a Data Object and essentially add, retrieve or
manipulate the information in Data Objects.

Data Objects

Data is actually stored in the Data Objects. These objects are classified into two types viz.,
Internal objects and User defined objects/TDL objects.

Internal Objects

Internal objects are provided by the platform. They are stored in the Tally Database. Multiple
instances of internal objects can exist. In Tally.ERP 9, internal objects are of several types.
Examples of internal objects are Company, Group, Ledger, Stock, Stock Item, Voucher Type,
Cost Centre, Cost Category Budget, Bill and Unit of Measure.

User Defined Objects/TDL Objects

All the Objects which are defined by the user in TDL are referred to as User Defined Objects or
TDL objects. User defined objects are further classified as Static Objects or Dynamic Objects.

Static TDL Objects cannot be stored in Tally Database. The data for the Static object is hard
coded in the program and can be used for display purpose only.

Dynamic TDL Objects can be created from the data available in any of the following external
data sources:

o XML Files from remote HTTP server

o DLL files

o From any type of database through ODBC
In TDL, the data from all these external data sources is available in a collection.
Example of Internal Objects and TDL Objects
Static TDL Objects/External Objects

As discussed earlier, a user can create Static TDL Objects for which the data is hard coded.
Consider the following examples of Employee Details.

Employee Details

EmplNo Name Date Designation M Attributes
E0n1 Ernshna Aug 0l Mlanager
E00z Eadha Aug 0l Azst Manager Objects

In TDL, two objects have to be created such that EmpNo, Name, Date and Designation become
the attributes of the object. The code snippet to create these objects is as shown:

[Object : Emp 1]
EmpNo : E001
Name : “Krishna”

Date : Aug 01 Designation : Manager

67

Objects and Collections POWER OF SIMPLICITY

[Object : Emp 2]
EmpNo : E002
Name : “Radha”
Date : Aug 01
Designation : “Asst. Manager”
Internal Objects

Consider the data for a ledger object which has multiple bill details associated with it.
Ledger Details

Name Parent Closing Balance
*+—— Idethods
Erizhna sundry Creditor | 3000
Bill Date Bill Name Amount
12/3/08 Eill 1 1000 Collection
12/4008 Eil 2 2000

This hierarchical structure shows that the ledger ‘Krishna’ is created under the group ‘Sundry
Creditors’. It further contains multiple bill details. The Ledger Name is ‘Krishna’, the parent group
is ‘Sundry Creditors’ and the closing amount is 3000. The two bills ‘Bill 1’ for the amount 1000 and
‘Bill 2, for the amount 2000, are associated with the ledger Krishna.

| e Please refer to the Appendix for the detailed structure of Internal Objects and

m Methods.

1.3 Object Context

Each Interface object exists in the context of a Data Object. An Interface object either retrieves
information from the Data Object or stores information into the Data Object. The association of the
Interface object with a Data Object can be done at the Report, Part, Line and Field level. All the
methods of the associated Data Object are available in the Interface object, which is said to be in
the ‘Context’ of the associated Data Object.

The data is always retrieved from the database in context of the current object. All the data
manipulation operations are performed on the object in context only.

Any expression such as Formulae, Methods and so on which are evaluated in the Interface
object, will be in the ‘Context’ of the Data Object.

68

Tty

POWER OF SIMPLICITY Objects and Collections

To understand the concept of object context, consider the following example:

When the Interface object ‘Report’ is associated to the Data Object ‘Ledger’, then all the methods
and collection of the Ledger object can be referenced in the associated report. The Method

$Name, when used in the field, will display the name of the Ledger object associated at the
Report level. If no object is associated at the Report level, then no data will be displayed in the
field, since there is no object in the context.

2. Collections

A Collection is termed as a group of objects. It refers to a collection of zero or more objects. The
objects in the collection can be obtained either from the Tally database, or from external data
sources, e.g., XML file.

In default TDL, many collections are defined which are referred to as Internal Collections. The
collections created by a user are called user defined collections. Object in a collection follow the
Tally object structure, i.e., each object of the collection can contain Methods, Collections, and so
on.

A collection can be a collection of objects or a collection of collections. Figure 6.3 shows the
collection of objects.

Figure 6.3 Collection of objects

The collection of collections is referred to as a Union of collection. This capability will be
discussed in detail in the section Collection Capabilities.

In TDL, the collections are of two types: Simple collection and Compound collections.

69

Tty

Objects and Collections POWER OF SIMPLICITY

2.1 Types of Collection

Collections can have multiple Methods and Collection. They are classified as Simple Collection
and Compound Collection based on the constituents of the collection.

Method 1 » Method 1

Method 2 ; Method N

» Sub-Collection 1

Method N » Sub-Collection N

Figure 6.4 The classification of collection

Simple Collections

Simple collections contain only a single method which is repeatable. Simple Collections cannot
have sub-collections. The Name and Address are examples of Simple Collections.

Compound Collections

The collections which have sub-collections and multiple methods are called Compound
Collection. Any Internal or External Collections of Primary or Secondary or user defined objects
is an example of a Compound Collection. In both Simple and Compound Collections, the index
can be used to fetch user-defined or internal methods of the Object. The Index can be either First or
Last.

After describing the classification of a Collection, the following topic describes the various data
sources of a Collection.

70

Tty

POWER OF SIMPLICITY Objects and Collections

2.2 Sources of Collection

‘Collection’, the data processing artefact of TDL, provides extensive capabilities to gather data not
only from Tally database, but also from external sources using ODBC, DLLs and HTTP.

Based on the source of data, the collections are referred to as External collection, ODBC
collection, HTTP XML collection and Aggregate/summary collection.

The Collection of Internal Objects

In cases where a collection contains objects from Tally database, it is referred to as an Internal
Collection. In the collection of internal objects, the attributes used are Type, Child Of, Belongs To.

External Collection

The collection of static TDL objects are referred to as an External Collection. The attribute used to
create an external collection is ‘Object’.

ODBC Collection

The Data Objects populated in the collection are from an external database using ODBC. The
attributes used are ODBC, SQL, SQL Objects, SQL Parms and SQL Values.

HTTP XML Collection

The Objects of this collection are obtained from the XML file using HTTP. The file can be made
available either on the local machine or on the remote server. The attributes used in creating an
XML collections are ‘Remote URL, ‘Remote Request’, ‘XML Object Path’ and ‘XML Object’.

DLL Collection

A collection can be populated with objects obtained by executing a DLL file. The DLLs can be
written using an external application to extend the existing functionality of Tally. This allows the
users to extend the kernel capability by adding their own functions.

External Plug-Ins are written as DLL's and can be of two types:
o C++DLLs
o ActiveXDLLs

In order to create the Collection that calls an external Plugin the following attributes are used.
Values can be passed to the DLLs as parameters.

Syntax
[Collection : My DLL Collection]
Plug-In : <path to dl1>.<pInput param>
ActiveX Plug-In : <Project Name>.<Class Name>.<pInput param>
The value returned by executing the DLL will be available as objects in the collection.

2.3 Creating a Collection

TDL provides a set of attributes to create a collection and populate it with objects obtained from
various data sources. The set of attributes used in the collection is based on the data source as
mentioned in the section Sources of Collections. This section describes the attributes used in the
creation of an internal and external collection. Creating collections from various data sources will
be explained later.

71

Tty

Objects and Collections POWER OF SIMPLICITY

Collection of Internal Objects

To create a collection of internal objects, the attribute “Type’ is used. It accepts object type name
as the value. The collection definition for creating an internal collection has the following syntax.

Syntax
[Collection : <Collection Name>]
Type : <Object Type>
Where,
<Collection Name> is a user defined name for the collection.
<Object Type> is the name of any of the internal objects, e.g., Group, Stockltem, Voucher, etc.
Attribute — Type

This attribute is used to define a collection of a particular Type or Subtype. This attribute can take
values of the default TDL objects as well as the user defined fields (UDF).

Syntax
Type : <ObjectType> [: <ParentType>]
Where,
<Object Type> is the name of the object type or its sub-type.
<Parent Type> is optional and is required if the subtype is to be specified.
Example:

[Collection : My Collection]
Type : Ledger

The collection My Collection consists of a collection of Ledgers which is an Internal object.
External Collection

To create a collection of Static TDL objects the attribute used is Object. The collection definition
for creating external collection has the following syntax:

Syntax
[Collection : <Collection Name>]

Object : <ObjectName>, <ObjectName>,, <Object Name>
Where,
<Collection Name> is the user defined name for the collection.
<Object Name> are the names of user-defined objects.
Attribute — Object

The ‘Object’ attribute is used to create a collection of user-defined objects. A collection can have
multiple collections/objects in it.

Syntax
Object : <List of Objects>

72

Tty

POWER OF SIMPLICITY Objects and Collections

Where,

<List of Objects> is a comma-separated list of objects.

Here, the objects are defined using the ‘Object’ definition, as shown in the following example.
Example:

[Collection : Emp]
Object : Empl, Emp2
[Object : Empl]
EmpName : "Ram Kumar"
Age : "25"
[Object : Emp2]
EmpName : "Krishna Yadav"
Age : "30"

The Objects of Collection ‘Emp’ has the Methods ‘EmpName’ and ‘Age’.

In TDL, Methods are used to retrieve data from Objects and Collections. The following section
explains the Usage and Types of methods.

3. Object Association

Object Association is the process of linking an Interface Object with one or more Data Objects.
Each Interface Object must be in the context of a Data Object. A TDL programmer can associate
an Interface Object with any Data Obiject. If a Interface object is not explicitly associated with any
Data Object, then Anonymous Object is associated to it. Anonymous Obiject is a Primary data
Object provided by platform. It has no methods, sub-collections, or parameters.

Object Association can be done at the following levels:
o Report Level Association
o Part Level Association
o Line Level Association
o Field Level Association

Once an Object is associated at the Top level, the child level Interface Objects inherit it, unless it is
explicitly overridden. If there is no explicit association of the Data Object at the Report level, it is
associated with the Anonymous Object.

3.1 Report Level Object association

A Report is normally associated with a data object, which it gets from the previous Report and if
not, will be associated with the anonymous object. From Release 3.0 onwards, the syntax for
association has been enhanced to override the default association as well. The Report attribute
‘Object’ has been enhanced to take an additional optional value as ‘Object Identifier Formula’.

73

Tty

Objects and Collections POWER OF SIMPLICITY

Syntax
Object : <ObjectType> [: <ObjectIdentifierFormula>]
Where,

<ObjectType> is a Type of Primary Object.

<ObjectldentifierFormula> is an optional value and refers to any formula which evaluates the
name of Primary Object.

Example 1: Without the Object Identifier

[#Form : Sales Color]
Delete : Print
Add : Print : New Sales Format
[Report : New Sales Format]
Object : Voucher

Default Sales Color Form is modified to have a new print format ‘New Sales Format’. This Report
gets the voucher object from the previous Report.
Example 2: With the Object Identifier

[Report : Sample Report]
Object : Ledger: “Cash”

The Ledger ‘Cash’ is associated to the Report ‘Sample Report’. Now components of a ‘Sample
Report’ by default, inherit this ledger object association.

3.2 Part Level Object Association

Part inherits the Object from the Report/Part/Line, by default. This can be overridden in two ways.
Using the ‘Object’ attribute specification in the Part definition

The syntax of an Object attribute at the part level is as follows:

Syntax

Object : <SupplierCollection> : <SeekTypeKeyword> [: <SeekCondition>]
Where,

<SupplierCollection> is the name of the Collection of Secondary Objects.
<SeekTypeKeyword> can be First or Last, which denotes the position index.
<SeekCondition> is an optional value, and is a filter condition to the Supplier collection.
Example: Part in the Context of Voucher Object

[Part : Sample Part]

Line : Sample Line

Object : InventoryEntries:First:@@StkNameFilter

74

Tty

POWER OF SIMPLICITY Objects and Collections

Scroll : Vertical
[System : Formula]
StkNameFilter : $StockItemName = "Tally Developer”

The first inventory entry having stock item “Tally Developer” is associated with Part ‘Sample
Part’.Only sub-objects can be associated at part level for which the primary object is associated at
the Report level. To overcome this limitation a new attribute ‘Object Ex’ is introduced at part level
in release 3.0.

Using ‘Object Ex’ attribute specification in Part definition

The attribute ‘Object Ex’ provides the ease of using enhanced method formula syntax, while
specifying the object association. Now even the Primary Object can be associated to a Part, which
was not possible with the Object attribute of ‘Part’ Definition.

Syntax
Object Ex : <Method Formula Syntax>
Where,
<Method formula syntax> is, <Absolute Spec>.[<SubObjectSpec>]

<Absolute Specification> is (<Object Type>, <Object Identifier Formula>). If only Absolute
Spec. is given, then it should end with dot (*.’).

<Sub Object Specification> is CollectionName[Index,<Condition>]
Example: 1

[Part : Sample Part]
Object Ex : (Ledger,"Customer")

The Ledger object “Customer 1” is associated to the Part ‘Sample Part’. Since only the absolute
specification used, the Object specification is ends with ‘.’
Example: 2

[Part : Sample Part]

Object Ex : (Ledger,"Customer").BillAllocations[1l,@@Conditionl]
[System : Formula]

Conditionl : $Name = "Bills 2"

The Secondary Object ‘Bill Allocation’ is associated with the Part ‘Sample Part’.

The Data Object associated to some other Interface Object can also be associated to a Part. This
aspect will be elaborated in the section ‘Object Access via Ul Object’ of the Enhancement
training. The enhanced method formula syntax is discussed in detail under the section
‘Accessing Methods’.

75

Tty

Objects and Collections POWER OF SIMPLICITY

3.3 Line Level Object Association

An object can be associated to a Line by Part attribute ‘Repeat’. Now, the Part attribute ‘Repeat’ is
enhanced to support the following.

o Extraction of collection from any Data object.
o Extraction of collection from Ul Object associated Data object. This aspect will be
elaborated in the section “Object Access via Ul Object”.
Attribute - Repeat
Syntax
Repeat : <Line Name> : <Coll Name> : [<Supplier Coll> : <SeekTypeKeyword> :
<SeekCondition>]
Where,

<Coll Name> is the name of the Collection. If the Collection is present in one level down of the
object hierarchy, then Supplier Collection needs to be mentioned.

<SupplierCollection> is the name of the Collection of secondary Objects.
<SeekTypeKeyword> can either be First or Last which denotes the position index.
<SeekCondition> is an optional value and is a filter condition to the supplier collection.
Example: Part in the context of Voucher Object

[Part : Sample Part]

Line : Sample Line
Repeat : Sample Line: Bill Allocations: Ledger Entries: First: +
@@LedFormula

[System : Formula]
LedFormula : $LedgerName = “Customer”
The Line ‘Sample Line’ is repeated over Bill Allocations of first Object ‘Ledger entries’, which
satisfies the given condition.
Alternate ‘Repeat’ Syntax

Instead of specifying the ‘<Coll Name>:[<Supplier Coll>:<SeekTypeKeyword>:
<SeekCondition>7], the new method formula syntax can be used as follows:

Syntax

Repeat : <Line Name> : <MethodFormulaSyntax>
Where,

<MethodFormulaSyntax>is <Absolute Spec>.<SubObjectSpec>
<Absolute Spec> is (<Object Type>, <Object Identifier Formula>)
<Sub Object Spec> is CollectionName[Index,<Condition>]

76

Tty

POWER OF SIMPLICITY Objects and Collections

Example:

[Part : Sample Part]
Line : Sample Line
Repeat : Sample Line : (Ledger, “Customer”).BillAllocations

The Line ‘Sample Line’ is repeated over Bill Allocations of Object Ledger for Customer ledger.
3.4 Field Level Object Association

By default, it is inherited from the Parent line or Field (if field is inside a field). This cannot be
overridden. However Field also allows Object Specification syntax. This association, if specified,
acts as the ‘Secondary Context Object’ for the Field. During any formula evaluation, if the
formula/method fails in the context of the Primary Object, the Secondary Object is tried then.

4. Methods

Each piece of information stored in the data object can be retrieved using a method. A method
either performs some operation on the object, or retrieves a value from it. To retrieve the value
from database, the storage name is prefixed with $ symbol. TDL provides pre-defined methods
and allows the user to create methods as well. Methods are classified as Internal or External.

4.1 Types of Methods

Internal Methods

The methods which are defined by the platform are called as Internal Methods. For example, the
methods Name, Address and Parent are the internal Methods of Object ‘Ledger’.

User Defined/External Methods

A user can change the behaviour or perform an action on the internal object by defining new
Methods. Methods defined by the user are referred to as External/User-defined methods.

Example: A Method ‘DiffBal’ can be created for an Object ‘Ledger’, which gives the difference of
the total debit amount and total credit amount.

4.2 Accessing Methods
Methods of an object can be accessed in TDL in three different ways, based on the object context.
Accessing data from the current Object
Incase you are already in the object context, use the Method name prefixed with $ directly.
Syntax
$<MethodName>
Where,
<Method Name> is the name of the Method of the object in context.
Example:

SCompanyName

77

Tty

Objects and Collections POWER OF SIMPLICITY

Accessing by Reference

In cases where the user is not in the object context, or is in a different object context then
following syntax may be used:

Syntax

$<Method Name> : <Object Name>:<formula>
Where,
<Method Name> is the name of the Method, which belongs to the Object.
<Object Name> is the name of the Object.
<Formula> is the value, based on which, the Method value is retrieved.
Example:

SName : Ledger : ##SVLedgerName

Accessing by using the Index

In cases where the user is not in the object context, or in a different object context, the following
syntax may be used:

Syntax

$<Method Name> : < Collection Name> : <Seek Type>
Where,
<Method Name> is the name of the Method which belongs to the Collection.
<Collection Name> is the name of the Collection.
<Seek Type> is the searching direction. It can either be First or Last.
Example:

$LedgerName : LedgerEntries:First

Directly Accessing Data from Any Object

The Method formula syntax allows direct access to any object Method, including its
sub-collections to any level, with a dotted notation framework.The values from any object
anywhere can be accessed, without making the object as the current object. This syntax is
introduced to support access out of the scope of the Primary Object and to access the Sub object
at any level using (.) dotted notation, with index and condition support.
Syntax

$<PrimaryObjectSpec>.<SubObjectPathSpec>.MethodName
Where,

<Primary Object Spec> can be (<Primary Object Type Keyword>, <Primary Object Identifier
Formula>)

<SubObjectPathSpec> is given as the Collection Name [<Index Formula>, [<Condition>]]
<MethodName> refers to the name of the Method in the specified path.

<Index Formula> should return a number, which acts as a position specifier in the Collection of
Objects matching the given <condition>

78

Tty

POWER OF SIMPLICITY Objects and Collections

Example: Assuming that the Voucher is the current object

1. To get the Ledger Name of the first Ledger Entry from the current Voucher:
Set As :$LedgerEntries[1] .LedgerName

2. To get the amount of the first Ledger Entry on the Ledger Sales from the current voucher (Sales

Invoice):
Set As : SLedgerEntries[1l, @@LedgerCondition] .Amount
LedgerCondition : $LedgerName = “Sales”

3. To get the first Bill Name of the first Ledger entry on the Party Ledger from the current
voucher (Sales Invoice):

Set As : $LedgerEntries[1l,@@LedgerCondition].BillAllocaions[1l].Name
LedgerCondition : $LedgerName = @@InvPartyName

4. To get the Opening Balance of the first Bill for the Party Ledger Acme Corp:
Set As : $(Ledger,@@PartyLedger).BillAllocations[1].0OpeningBalance

PartylLedger : “Acme Corp”

The Primary Object specification is optional. If it is not specified, the current object will be
considered as the Primary Object. A Sub-Collection specification is optional. If not specified,
Methods from the current or specified primary object will be made available. The Index
specifies the position of the Sub-Object to be picked up from the Sub-Collection. This Condition is
‘Filter’ which is checked on the objects of the specified Sub-Collection.

<Primary Object Identifier Formula> <Index Formula> and Condition can be a value or
formula.

The Index Formula can be any formula evaluating to a number. The Positive Number indicates a
forward search while a negative number indicates a backward search. This can also be a keyword
First or Last, which is equivalent to specifying 1 or -1 respectively.

In cases where both the Index and Condition are specified, the index is applicable on the
Object(s) which satisfies the condition so that one gets the nth Object which clears the condition.
Let’s say for example, if the Index specified is 2 and Condition is Name = ‘Sales’, then the second
object which matches the name ‘Sales’, will be picked up.

The Primary Object Path Specification can either be Relative or Absolute. A Relative Path is
referred to by using empty parenthesis () or a dotted path to refer to the Parent object relatively. A
SINGLE DOT denotes the current object, DOUBLE DOT the Parent Object, TRIPLE DOT the
Grand Parent Object, and so on, within an Internal Object. The Absolute Path refers to the path in
which the Primary Object is explicitly specified.

To access the Methods of Primary Object using a Relative Path, the following syntax is used.
Syntax
$ () .<MethodName> or $..<MethodName> or $..<MethodName>

79

Tty

Objects and Collections POWER OF SIMPLICITY

Example:

With regard to the context of LedgerEntries Object within Voucher Object, the following have to be
written to access the Date from its Parent Object which is the Voucher Object.

S..Date

To access the Methods of Primary Object using the Absolute Path:
Example:

$ (Ledger, “Cash”) .OpeningBalance

5. Collection Capabilities

Having understood the concept of Objects, Collection, Methods and Object association, let us
now concentrate on understanding the concept of Collection as a Data Processing Artefact in TDL.

In previous sections, we saw that a Collection can contain objects from Tally Database or
populate objects from external data sources as well. In further sections, we will discuss the
capabilities of collection from the data processing perspective. Let’'s segregate the capabilities into:

o Basic Capabilities

= Union
s Filtering
= Sorting

s Searching
o Advanced Capabilities
= Extraction
= Aggregation
s Usage As Tables
= Integration Capabilities using HTTP XML Collection
= Dynamic Object Support
s Collection Capabilities for Remoting

We will be covering the Basic capabilities in detail with all the relevant attributes and functions for
achieving the same. Some portions of Advanced capabilities which were available prior to
Tally.ERP 9 will be covered here. The latest developments pertaining to this, will be covered in our
training program ‘TDL Enhancements for Tally.ERP 9'.

5.1 Basic Capabilities
Union

‘Union’ refers to creation of a Collection by combining multiple Collections. The total number of
objects in the resultant Collection will be the sum of objects in all the Collections. The following
figure shows a Collection of sub-collections, which can further be unions of collections, and so on.

80

Tty

POWER OF SIMPLICITY Objects and Collections

Collection

Figure 6.5 Collection of Sub-collection

This example shows that Collection C1 contains Collection C2 and Collection C3. Likewise,
Collection C2 further contains Collection C4 and Collection C5. The attribute Collection is used
to create a Union as follows:

Attribute - Collection

The attribute ‘Collection’ is used to specify a Collection under the main Collection. All the objects
belonging to the Sub collections are available in the resultant Collection.

Syntax
Collection : <List of Collections>
Where,

<List of Collections> is a comma-separated list of collections. The Collections that are used can
be of different types.

Example:

[Collection : Groupandledger]
Collections : Group, Ledger

Here, the collections ‘Group’ and ‘Ledger’ are used, under the main collection GroupandLedger.
Filtering

If it is required to retrieve only a specific set of objects from a Collection, then the collection needs
to be filtered. Filtering is applied on the Collection, based on a condition. All the objects which
satisfy the given condition are retrieved and are available in the Collection.

Filtering Attributes
The attributes used for applying a filter are ChildOf, BelongsTo and Filter.

81

Tty

Objects and Collections POWER OF SIMPLICITY

Attribute - Child Of

The ChildOf attribute helps to control the display of the contents of a collection. It retrieves only
those objects whose direct parent is the string specified as the parameter of this attribute.

Syntax
ChildOf : <String Formula>
Example:
[Collection : My Collection]

Type : Ledger
ChildOf : "Sundry Debtors"

It will return all the ledgers grouped directly under the group ‘Sundry Debtors’.

The following definition code will return all the ledgers under the group blank. By default, Tally
returns the ledger ‘Profit and Loss’.

Childof : ""

Attribute - BelongsTo

The attribute ‘Belongs To’ is used along with the ‘Child Of attribute. This attribute determines
whether to retrieve the first level of objects under the value specified in ‘ChildOf’, or include all the
objects upto the lowermost level. ‘Belongs To’ takes a logical value.

Syntax

BelongsTo : <Logical Value>
Where,
<Logical Value> can be either YES or NO.
Example:

Consider the previous example of accounts. The following code is an extension of that code.’
[Collection : My Collection]
Type : Ledger
Childof : "Sundry Debtors"

BelongsTo : Yes

This code will retrieve all the objects directly under the group ‘Sundry Debtors’, as well as all the
objects which are under the sub groups of ‘Sundry Debtors’.

Attribute - Filter

The attribute ‘Filter’ is used to specify the condition for filtering the objects. The ‘Filter’ attribute
takes a system formula. The condition is specified in the formula. If more than one filter has to be
specified, they can be separated by comma.

82

Tty

POWER OF SIMPLICITY Objects and Collections

Syntax
Filter : <FilterName>
Where,
<Filter Name> is the name of the Global formula.
Example:

[Collection : LtdDebtors]

Type : Ledgers
ChildOf : “Sundry Debtors”
Filter : NameFilter

[System : Formula]
NameFilter : $Name contains "Ltd" OR $Name contains "Limited"

The filter Namefilter is used to fetch only those objects, whose name contains the string “Ltd” or
“Limited”.

Filtering Functions

Function - $$FilterAmtTotal

It is used to get the sum of values returned by the specified filter expression, when applied to all
the Objects in the Collection that satisfy the expression. The value returned is of type Amount.

Syntax

$$FilterAmtTotal:<CollectionName>:<FilterExpression>:<ValueExpression>
Where,

<CollectionName> is the name of a Collection,
<FilterExpression> is a System Formula.

<Filter Expression> is evaluated for each Object. The resultant Objects that clear the filter are
selected for further processing.

<ValueExpression> is any valid expression, which is to be evaluated on each Object of the
Collection.

Example:

SFilterAmtTotal : AllLedgerEntries : CashBankEntries : $Amount
[System : Formula]
CashBankEntries : $$IsCashLedger : $LedgerName AND $$IsDr : S$Amount

The filter in the example checks whether the ledger is a Cash Ledger and the amount is of the
type ‘Debit’. $$IsCashLedger is a logical Function, which checks whether the argument passed is
a Cash Ledger or not. This statement can be evaluated only in the context of a Voucher Obiject.

83

Tty

Objects and Collections POWER OF SIMPLICITY

Function - $$FilterQtyTotal
It is similar to $$FilterAmtTotal, except that the Value Expression should evaluate to type Quantity.
Syntax

$$FilterQtyTotal:<CollectionName>:<FilterExpression>:<ValueExpression>
Where,
<CollectionName> is the name of Collection

<FilterExpression> is a System Formula.The Filter Expression is evaluated for each Object, and
the resultant Objects that clear the filter are selected for further processing.

<ValueExpression> is any valid expression, which is to be evaluated on each Object of the
Collection.

Function - $$FilterCount

The function $$FilterCount is used to get the total number of Objects in a Collection, after the
filters are applied.

Syntax
$$FilterCount : <CollectionName> : <FilterExpression>

Where,
<CollectionName> is the name of a Collection.
<FilterExpression> is a System Formula.
Example:
$$FilterCount : AllLedgerEntries:HasBankEntry > 0O

[System : Formula]
HasBankEntry : ($$IsDr:S$Amount != $IsDeemedPositive:+
VoucherType: $VoucherTypeName) +
AND ($$IsLedOfGrp:$LedgerName: $$GroupBank+
OR $$IsLedOfGrp:S$LedgerName: $SSGroupBankOD)

It confirms whether the voucher has any Ledger under the Group Bank or BankOD.

$$IsLedOfGrp accepts two parameters and returns TRUE if parameter 1 is a ledger of a Group
mentioned in parameter 2. GroupBankOD and GroupBank are functions which return the name of
the reserved groups Bank OD and Bank.

Function - $$FilterValue

This function is used to get the value of a specific expression, based on the position specified in
the set of objects filtered by the expression.

84

Tty

POWER OF SIMPLICITY Objects and Collections

Syntax

$$FilterValue : <ValueExpression> : <CollectionName> : +

<PositionSpecifier> : <FilterExpression>
Where,
<CollectionName> is the name of the Collection.
<FilterExpression> is the filter applied to get a set of filtered Objects.
<PositionSpecifier> denotes the position.
<ValueExpression> is any valid expression to be evaluated on each Object of the Collection.
Example:
$$FilterValue : $LedgerName:LedgerEntries : First:IsPartyLedger

This example filters all the objects within LedgerEntries to satisfy the filter condition IsPartyLedger
and returns the first value of the requested method LedgerName that satisfies the condition.
Some other Functions Used
Function - $$GroupSundryDebtors
It returns the name of the group ‘Sundry Debtor’, even if the user renames it.
Syntax

$$GroupSundryDebtors
Example:

[Collection : Sample Coll]
Type : Ledgers
Child Of : $$GroupSundryDebtors

This will populate the collection Sample Coll with all objects under the Group ‘Sundry Debtors’.

In case the user has renamed the group “Sundry Debtors” as “My Sundry Debtors”, the following
code snippet won’t have any objects in the collection.

[Collection : Sample Colll]
Type : Ledgers
Child Of : “Sundry Debtors”
But in this case, $$GroupSundryDebtors will populate the collection with all the objects that are
under the Group ‘Sundry Debtor’ even if the user renames the group.
Function - $$GroupSundryCreditors
It returns the name of the group ‘Sundry Creditors’, even if the user renames it.

Syntax
$$GroupSundryCreditors

85

Tty

Objects and Collections POWER OF SIMPLICITY

Example:
[Collection : Sample Coll]

Type : Ledgers
Child Of : $$GroupSundryCreditors

This will populate the collection Sample Coll with all objects under the Group ‘Sundry Creditors’.

In case the user has renamed the group “Sundry Debtor” as “My Sundry Debtors”, the following
code snippet won’t have any objects in the collection.

[Collection : Sample Colll]
Type : Ledgers
Child Of : “Sundry Creditors”
But in this case, $$GroupSundryCreditor will populate the collection with all the objects that are
under the Group “Sundry Creditors”, even if the user renames the group.
Sorting
Sorting refers to the arrangement of objects in a specific order within the collection.

The ordering is done on the basis of a specific method and the sort order can either be ascending
or descending. The attribute Sort is used for this purpose.

Attribute - Sort

A collection can be sorted by specifying the sort sequence using the ‘Sort’ attribute. The collection
can be sorted by a combination of fields in ascending as well as in descending order.

Syntax
Sort : < Sort Name> : <List of Methods>
Where,

<List Of Methods> Is a comma separated list of methods. Sorting is done based on values of
methods. The default sort order is ascending. Prefix Methods name with ‘-, for descending order.

Example:

[Collection : My Collection]
Collections : MyLedger
Sort : Default : $ClosingBalance, S$Name

Searching

Collection capabilities have been enhanced to enable the indexing of objects based on a particular
method. Whenever a collection is indexed on a particular method, it allows instant access to the
corresponding values without the need for a complete scan.

86

Tty

POWER OF SIMPLICITY Objects and Collections

Attribute - Search Key
Syntax
Search Key : < Combination of Method name/s>

This implies that a unique key is created for every object which can be used to instantly access
the corresponding objects and its values.

The function which is used to retrieve the values from a collection based on the key specified is
$$CollectionFieldByKey:.

Function - $$CollectionFieldByKey
Syntax
$$CollectionFieldByKey : <Method Name> : <Key Formula> : <Collection Name>
Where,
<Method Name> is the name of the method.

<Key Formula> is a formula that can be mapped to the methods defined in the search key
exactly in the same order.

Example:
[Collection : My Ledgers]
Type : Ledger

Search Key : SName

[Field : My Closing Bal Field]

Set as : $SCollectionFieldByKey:SClosingBalance:@MySearchKey:+
My Ledgers
MySearchKey : #LedName

Here, a search key is defined on $name for collection MyLedgers. In the Field, value $Closing
Balance is retrieved based on ledger name. In this case, retrieval is faster than ordinary retrieval.

This capability is quite useful in case of matrix reports, i.e., when two or more dimensions need to
be represented as rows and columns. In such a case, defining the search key on a method
combination, and using $$CollectionFieldByKey for value retrieval improves performance. The
usage and examples based on the explanation above will be covered in detail in our training
program “TDL Enhancements for Tally.ERP 9.

5.2 Advanced Capabilities
Extraction and Chaining

The Collection capabilities have been enhanced to extract information from the collection using
other collections, including its sub-objects, with the choice of method(s), filter(s) and sort-order.
Specific attributes have been added at the collection level to achieve the same.

Prior to Tally.ERP 9, extraction was possible using specific function $$CollectionField.

87

Tty

Objects and Collections POWER OF SIMPLICITY

Function - $$CollectionField
This is used to get the value of a specified expression as applied on the nth Object of a Collection.
Syntax

$$CollectionField:<ValueExpression>:<PositionNumber>:<CollectionName>
Where,

<CollectionName> is the name of a collection.

<ValueExpression> is any valid expression to be evaluated on the element at position
<PositionNumber> in the collection.

Example:

$$CollectionField : $Amount : 1 : AllLedgerEntries

It returns the first value of the Method Amount from AllLedgerEntries Object.

This function affects the performance of the report in terms of time taken to display the report. A
detailed discussion on the enhancements for extraction, chaining and reuse will be covered in the
training program “TDL Enhancements for Tally.ERP 9.”

Grouping & Aggregation

A major technological advancement in this release of Tally.ERP 9 is “Data Roll up in TDL
Collection — GROUP BY”, which is a part of the TDL language capabilities. This is a milestone
achievement over the past 10 years. This will now facilitate the creation of large summary
tables of aggregations in a single shot, using the new attributes of the Collection description.This
allows us to Walk down the object hierarchies and gather values to summarizes them in one scan.

Overall, it reduces the TDL code complexity, resource requirement and increases performance
drastically in case of reports generated using this new capability.

The attributes used for extraction, chaining, and aggregation and grouping are Walk, By, Fetch,
Compute, AggrCompute. A detailed discussion on enhancements for aggregation and Grouping
using the new attributes will be covered in training program “TDL Enhancements for Tally.ERP 9.”

Prior to Tally.ERP 9, the totals were generated using the Total and aggregation functions like
CollAmtTotal or FilterAmtTotal on collections. These have certain advantages and
disadvantages. While they provide excellent granularity and control, each call is largely an
independent activity to gather the data set and then aggregate it. This significantly affects the
performance of the reports.

Let us now discuss the various functions which are available for summarization and aggregation.
Function - $$CollAmtTotal

This function is used to get the sum of values of Type Amount returned by a specified expression
when applied to all Objects in a given Collection. The return value is of type Amount.

Syntax
$$CollAmtTotal : <CollectionName> : <ValueExpression>
Where,

<CollectionName> is the name of a Collection.
<ValueExpression> is any valid TDL expression to be evaluated on each Object of Collection.

88

Tty

POWER OF SIMPLICITY Objects and Collections

Example:
$$CollAmtTotal : LedgerEntries : $Amount

It gets the sum of values in the Method Amount after it is applied on each Object in the Collection
LedgerEntries. This statement will hold good only when one is in the context of Voucher Object.

Function - $$CollQtyTotal

This function is used to get the sum of values of Type Quantity returned by the specified
expression when applied to all Objects in a given Collection. The value returned is of Type
Quantity.

Syntax
$$CollQtyTotal : <CollectionName> : <ValueExpression>

Where,
<CollectionName> is the name of a Collection
<ValueExpression> is any valid TDL expression to be evaluated on each Object of Collection.
Example:

$5Col1QtyTotal : InventoryEntries : $BilledQty
Each Inventory entry in the current Voucher Object is picked up and the Method BilledQty is
evaluated on it. The resultant quantity is summed up to get the result.

Function - $$ColINumTotal

This function is used to get the sum of values of Type Number returned by the specified
expression, when applied to all Objects in a given Collection. The value returned is of the Type
Number.

Syntax
$$Col1lNumTotal : <CollectionName> : <ValueExpression>
Where,
<CollectionName> is the name of a Collection.
<ValueExpression> is any valid expression to be evaluated on each Object of the Collection.
Example:

$$CollNumTotal : InventoryEntries : S$Height

Each Inventory entry in the current Voucher Object is picked up and the Method Height evaluated
on it. The resultant height is summed up to get the result. Here, Height is an external Method of
Object Inventory Entry in a Voucher.

Usage as Tables

TDL allows to display the values obtained from the collection as a pop-up table. Earlier, the values
of voucher and the ODBC data couldn’t be displayed as a collection. Now, all limitations pertaining
to usage of Collections as Tables have been completely eliminated. Any collection which can be
created in TDL, can be displayed as a table now. Collection with aggregation and XML Collections
can also be used as Tables.

89

Tty

Objects and Collections POWER OF SIMPLICITY

Integration Capabilities using HTTP XML Collection

The Collection capability has been enhanced to gather live data from HTTP/web-service
delivering XML. The entire XML is automatically now converted to TDL objects and is available
natively in TDL reports as $ based methods. Reports can be shown live from an HTTP server. The
attributes in collection for gathering XML based data from a remote server over HTTP are
RemoteURL, RemoteRequest, XMLObjectPath, and XMLObiject.

Dynamic Object Support

When a collection is used for editing (alter/create), objects are dynamically added to the collection
when a new line is repeated over the same. The type of object which is added depends on the
specification in the TYPE attribute. In case the TYPE attribute is not specified, it defaults to adding
a standard empty object.

However, the following holds true for a COLLECTION keeping in mind the latest enhancements:
o It can be made up of multiple types of objects (say Ledgers and Groups).

o It can have TDL defined objects which are retrieved from XML file.They are specified
using XML Object.

o It can have aggregated objects.

Depending solely on the TYPE attribute to make a decision, the object type is a constraint with
respect to the above facts. This is now being removed with the introduction of a new attribute
which will independently govern the type of object to be added to the collection on-the-fly. The
following is now supported in a collection.

NEWOBJECT : type-of-object : condition

A detailed discussion on the subject can be accessed from our training program “TDL
Enhancements for Tally.ERP 9.

Collection Capabilities for Remoting

Enabling access to your organizational data ‘any-time, any-where’, and yet being truly usable, is
what Tally.ERP 9 delivers. With remote access through Tally.NET Server, it will be possible for
any authorized user to access Tally.ERP 9 from anywhere.

Major Enhancements have taken place at the collection level to achieve remoting capabilities. The
attributes Fetch, Compute and AggrCompute provided at the Collection level, and FetchObject
and FetchCollection at the Report level significantly help in above functionality.

A detailed documentation on “Writing TDL Compliant Reports” can be downloaded from our
website.

Learning Outcome

o Anobjectis a self-contained entity that consists of both data and procedures to manipulate
the data.

Objects are stored in a database.

Tally data base is hierarchical in nature in which the objects are stored in a tree-like structure.
Everything in TDL is an Object.

Objects used for designing the User Interface are referred to as interface objects.

o o o o

90

Tty

POWER OF SIMPLICITY Objects and Collections

o Data is actually stored in the Data Objects. Data objects are classified into two types
namely Internal objects and User defined/TDL Objects.

o A collection can be a collection of objects or a collection of collections.

o Collection, the data processing artefact of TDL provides extensive capabilities to gather
data, not only from the Tally database, but also from external sources using ODBC, DLLs
and HTTP.

o InTDL, Object association can be done at the following levels:
= Report Level Association
m Part Level Association
m Line Level Association
m Field Level Association

o Each piece of information stored in a data object can be retrieved using a method. Methods
are classified as internal or external methods.

o Union, Filtering, Sorting and Searching are the basic capabilities of collection.

o Extraction, Aggregation, Usage As Tables, Integration Capabilities using HTTP XML
Collection, Dynamic Object Support and Collection Capabilities for Remoting are the
advanced capabilities of collection.

91

Tty

POWER OF SIMPLICITY

Actions in TDL

Introduction

TDL is an event-driven language. Events can be triggered through a Keyboard shortcut or a
Mouse click. In an event, some predefined actions get executed. For example:

o The Ctrl+A Key pressed from a voucher accepts the entry Screen.

o Clicking on the F1 Button from the ‘Gateway of Tally’ Menu results in the pop up of the
Company Selection Screen.

Actions are activators of a specific task with a definite result. An action always originates from a
User Interface Object like Menu, Form, Line or Field.

1. Categories of Actions

Actions can be classified into two broad categories, viz

o Global Actions
o Object Specific Actions

Action Categorization

v
v v

Global Object Specific
(Display, (Form Accept,
Executive, Line Down,

Print etc) Field Down etc)

Figure 7.1 Action Categorization

Global Actions are not specific to any User Interface Object. For example, Display, Create,
Execute, Alter, etc., are Global Actions. They perform the action specified, irrespective of the Ul
Object. Global Actions are performed on a Report or a Menu.

Object Specific Actions are actions which can act only upon specific Ul Objects. For example,
‘Line Down’ is a Part-Specific Action, since Part owns multiple lines and an individual Line cannot
move the current focus to the subsequent line. Only the Part can move the focus to the
subsequent line. Object Specific Actions are performed on relevant User Interface Objects.

93

http://www.tallysolutions.com/
http://www.tallysolutions.com/
http://www.tally.co.in/
http://www.tally.co.in/

Tty

Actions in TDL POWER OF SIMPLICITY

Global Actions Object Specific Actions

Global Actions are not specific to any | These Actions are specific to a User Interface Object
User Interface Object

Can be originated by a Menu, Can be originated by a Menu, Form, Line or a Field
Button/Key or a Field

Performed on a Report or a Menu Performed on the relevant Interface Object
Example: Create, Display, Alter, Example: Line Up, Line Down, Explode (‘Line’
Print, Print Report, Modify Object, Object), Form Accept, Form Reject (‘Form’ Object),
Display Collection, etc. etc.

Table 7.1 Action Categorization
1.1 Action Association
Actions can be associated at various levels.

Action Association at Menu Definition

Action Association at ‘Menu’ Definition is done through the Menu ltem. Every Menu ltem except
‘Quit’ is associated with an Action. If an ltem is added without any action, then the default action
associated is to exit from the current Menu.

Syntax

[Menu : <Menu Name>]

Add : Key Item : [Position] : <Display Item> : <Unique Key> :
<Action Keyword> : <Action Parameter>
Where,
<Action Keyword> can be any Global Action.

<Action Parameter> is decided by the Action Keyword. If the Action Keyword is ‘Menu’, then the
Action Parameter necessarily has to be a Menu Name, else it has to be a Report Name.

Example:
[Menu : Commonly Used Reports]
Add : Key Item : Trial Balance : T : Display : Trial Balance
Add : Key Item : At Beginning : Outstandings : O : Menu : Outstandings

In this example, a Menu Commonly Used Reports is defined with 2 Items, viz.,

1. An ltem Trial Balance is added displaying the default report ‘Trial Balance’. Here, the action
is display, so the Action Value has to be a Report Name.

2. An Item ‘Outstandings’ is added at the beginning to activate another Menu ‘Outstandings’.The
action here is Menu, so the Action Value required is a Menu Name.

94

Tty

POWER OF SIMPLICITY Actions in TDL

Action Association at Button/Key Definition

Action Association at Button/Key definition is done using the attribute Action, followed by the
Action Keyword, with the parameters, if required.

Syntax
[Button : <Button Name>]

Action : Action Keyword [: Action Parameters]

Where,
<Action Keyword> can be any Global or Object Specific Action.

<Action Parameter> is decided by the Action Keyword. If the Action Keyword is ‘Menu’, then the
Action Parameter necessarily has to be a Menu Name, else it has to be a Report Name.

Example: Actions with Parameters
[Button : Outstandings]
Key : F5
Action : Menu: Outstandings
[Button : Trial Balance]
Key : F6
Action : Display : Trial Balance

Action Menu requires a Menu Name as Parameter and Actions Create, Display, Alter, etc.,
require a Report Name.
Example: Actions without Parameters

[Button : Printing Button]
Action : Print Report
[Button : Exporting Button]
Action : Export Report

Action Parameters for the Actions Print Report and Export Report are not mandatory. If the
Action Parameter is specified, then it prints the specified Report, else it prints the current Report.
Action Association at ‘Field’ Definition
Action Association at Field is done using Action Keyword with parameters and optional condition.
Syntax

[Field : <Field Name>]

Action Keyword : <Action Parameters>[: Condition]

Where,
<Action Keyword> can be both Global or Object Specific Actions.

95

Tty

Actions in TDL POWER OF SIMPLICITY

<Action Parameters> can be the Value on which these Actions could be performed.
<Condition> is optional. It restricts the action to be performed only if the condition returns TRUE.
Example:

[Field : My Trial Balance]
Display : Group : $$IsGroup
Display: Ledger : $$IsLedger

In this example, the Field Trial Balance has 2 statements, viz.,

1. Displaying a Group, if the current object in context is a Group
2. Displaying a Ledger, if the current object in context is a Ledger

2. Components of Actions

Any Action is always executed with respect to two contexts:
o Originator
o Executor

The Originator is one that originates the Action, viz., Menu, Form, Line or Field, e.g., a Down
Arrow Key pressed. The event is passed from the current Report to the associated Form, Parts,
Lines or Fields. Keys could be associated in Menu, Form, Line or Field. If the activated Key is
found in Form, it searches further for Line Association, and then continues till Field. The Lowest
Level Key Association gets the highest precedence. If the Key is associated at Form as well as
Field, the Key Association at Field Level gets executed. In this case, the Field is the Originator.

The Executer is one on which the action is executed. For example, ‘Form Accept’ Key, though
attached at Field Level, is a Form Action. Hence, Form is the executer of the action. In case of
execution, it searches from Report to the Field for the action to be executed. ‘Line Down’ is a Part
Level Action. Though associated at the Form, it will be executed by the Part to move the current
focus to the subsequent line. Hence, Part is an executer of the Action ‘Line Down’.

Originator Executer
The Originator initiates the action by | The Executer executes the action associated with
associating the Key or a Button the Key or Button, initiated by originator
Global Actions can be originated by | Global Actions are executed by the originator object.
Menu, Button/ Key or a Field, and However, Object Specific Actions can be executed
Object Specific Actions by a Menu, by Objects other than originator
Form, Line or a Field

96

Tty

POWER OF SIMPLICITY

Actions in TDL

The sequence followed to gather all
Keys originating within a Report is
Top to Bottom, i.e., from Report to
Field definition. The lowest in the
hierarchy gets highest precedence,
e.g., if the same key is associated at
both Form and Field definitions, the
Key at Field Definition is considered
for execution.

The sequence followed to consume the Keys
originated is from Bottom to Top, i.e., from a Field to
a Report Definition. In other words, the lowest in the
hierarchy gets the highest preference, e.g., if the
same key is relevant for both Part and Line
definitions, the Key will be executed in context of the
Line Definition.

Example 1
[Key: Create Ledger]
Key : Alt+C
Action : Create : Ledger
[Field: CST Supplier Ledger]
Key : Create Ledger

Associating the Key with the Field,
Field is the originator as well as exe-

Example 2
[Key: Part Display PgUp]
Key : PgUp
Action : Part PgUp
[System: Form Keys]
Keys : Part Display PgUp
Key Part Display PgUp is originated by Form, but
its executer is the Part.

cuter here.

Table 7.2 Components of Actions

3. Global Actions

As discussed, Global Actions are Actions that are not specific to any Ul Object. Global Action
provides an indication to the TDL Interpreter as to which specific task should be executed to fulfil
the user requirements. Global Actions are mainly performed on three principal definition types,
namely Report, Collection and Menu. Some frequently used Global Actions are discussed below:

3.1 Action - Menu

The Action ‘Menu’ acts only on the ‘Menu’ Definition, and vice versa. The value of the ‘Menu’
Action must be a Menu Name. This Menu has to be further defined to list the Items displaying
another Menu or a Report. A Menu Definition continues until all the Items are used to display
Reports, and there are no further Menu Actions assigned to the final Menu ltems.

Example: 1
., The following code demonstrates the usage of the Action ‘Menu’, along with further Menu Definitions
[#Menu : Gateway of Tally]

Add : Key Item : Sample Item : F : Menu : Sample Final Accounts

. Menu Definition for the Menu to be displayed when the above Item is activated

[Menu : Sample Final Accounts]
Add : Key Item : Trial Balance : T : Display : Trial Balance
Add : Key Item : Profit & Loss : P : Display : Profit and Loss
Add : Key Item : Balance Sheet : B : Display : Balance Sheet

97

Tty

Actions in TDL POWER OF SIMPLICITY

In this example, the Default Menu Gateway of Tally is altered to add a new Item Sample Item, with
the ‘Menu’ action displaying the Sample Final Accounts Sub Menu.

Sub Menu Sample Final Accounts will display all components of Final Accounts, i.e.,
o Trial Balance
o Profit & Loss
o Balance Sheet
All the Items here use the ‘Display’ Action. Hence, no further Menu Definition is required.

As seen in the previous Topic “Objects, Methods and Collections”, the ‘Display’

é' Action takes the Report Name as its parameter, and is used to display the Reports,
NoteS as is specified.
Example: 2

., The following code demonstrates the usage of Menu and Display Actions and also the
;; the relevance of their association in Menu and Reports (through Form)
;- Button Definition to activate a Menu

[Button : Final Accounts]
Key : FS
Action : Menu : Sample Final Accounts

/* Since the above Button activates a Menu, it can be acted only upon a Menu It cannot be associated to a
Report ¥/

[#Menu : Gateway of Tally]

Buttons : Final Accounts ;; aftaching a button to the menu
[#Form : Group Summary]

Buttons : Final Accounts

. Above is an incorrect association as Buttons triggering Menu Action cannot be attached to a Form.
;; Button Definition to Display a Report
[Button : Balance Sheet]

Key : F6
Action : Display : Balance Sheet

/* Since the above Button activates a Report, it can be associated to both a Menu and a Report */

[#Form : Group Summary]

Button : Balance Sheet ;; attaching a button to the report

98

Tty

POWER OF SIMPLICITY Actions in TDL

[#Menu : Display Menul]
Button : Balance Sheet ;; attaching a button to the menu

In this example:

o A new Button Final Accounts is added to activate a Menu Sample Final Accounts,
which is attached to the default Menu ‘Gateway of Tally’.

o The Button Final Accounts cannot be attached to a Report, since a Menu cannot be
acted upon in a Report. In the example, the Button Final Accounts is attached to Form
‘Group Summary’, which is incorrect since the Menu cannot be called from a Report.

o Another Button Balance Sheet is added to display Report Balance Sheet which is enabled
in all Reports, using Form Group Summary, and also in the Menu Display Menu.

o The Button Balance Sheet can be attached to a Report as well as to a Menu, since the
Report can be acted upon by a Report as well as a Menu.

3.2 Action - Modify Object

This action alters the methods of an Object at any level in Object Hierarchy. It supports modifying
multiple values of an Object by specifying a comma-separated list of Method: Value pairs.
Syntax

Action : Modify Object : <PrimaryObjectSpec>.<SubObjectPathSpec>.

.
[,<SubObjectPathSpec>.MethodName :<Value>,]

MethodName : Value>[,Method Name : <Value>

The specifications given for <PrimaryObjectSpec>, <SubObjectPathSpec>, Method Name remain
the same as described in the New Method syntax section in the topic ‘Objects and Collections’.

A single Modify Object Action cannot modify methods of multiple primary Objects, but can modify
multiple values of an Object.

Modify Object is allowed to have Primary Object Specification only once, i.e., for the first value.
Further values permissible are optional in the Sub Object and Method Specification only.

From second value onwards, Sub Object specification is optional. If Sub Object Specification is
specified, the context is assumed to be the Primary Object specified for first value. In absence of
sub object specification, the previous value specification's leaf object is considered as the context.

Example: 1
[Key : Alter My Object]

Key : Ctrl + Z

Action : Modify Object : (Ledger,"MyLedger").BillAllocations +
[First, $Name="MyBill"].OpeningBalance : 100,+
Address[Last] .Address : "Bangalore"

The existing ledger My Ledger is being altered with new values for the Opening Balance for the
existing bill and Address. The key Alter My Object can be attached to any Menu or Form.

99

Tty

Actions in TDL POWER OF SIMPLICITY

Example: 2

[Key : Alter My Object]
Key : Ctrl + Z
Action : Modify Object :(Ledger,"MyLedger").BillAllocations[1l] +
.OpeningBalance:1000,Name: ”“My New Bill”,..Address[First]+
.Address :"Hongasandra Bangalore", Opening Balance:5000

The existing ledger My Ledger is being altered with new values for the Opening Balance
applicable on the existing bill, Opening Balance of the ledger and the first line of the Address.
The key Alter My Object can be attached to any Menu or Form.

A button bearing the action ‘Modify Object’, if associated at Menu Definition, requires a primary
object specification as Menu, which is not in context of any Data Object.

Example:

[#Menu : Gateway of Tally]
Add : Button : Alter My Object

The following points should be considered while associating a key with the action Modify Object:

o Since the Menu does not have any Info Objects in context, specifying Primary Object
becomes mandatory.

o Since Menu cannot work on scopes like Selected, Unselected, etc., the scopes specified
are ignored.

o Any formula specified in the value and evaluated, assumes Menu Object as requestor.

o Even Method values pertaining to Company Objects can be modified.

o A button can be added in the Menu to specify the action Modify Object at the Menu level.
3.3 Action - Browse URL

The Action ‘Browse URL is used to provide a link to any web browser, with a URL formula passed
as a parameter.

Syntax
Action : Browse URL : <URL Formula>
Example: Field acting as a hyperlink

[Key : Execute Hyperlink]

Key : Left Click

Action : Browse URL : “www.tallysolutions.com”
[Field : Hyperlink Company]

Color : Blue Border : Thin Bottom

100

Tty

POWER OF SIMPLICITY Actions in TDL
Key : Execute Hyperlink
Set as : "Tally Solutions Pvt. Ltd"
Local : Key : Execute Hyperlink : Action : Browse URL: +

http://www.tally.co.in

3.4 Actions - Create and Alter

‘Create’ and ‘Alter’ Actions act only upon the ‘Report’ Definition. These actions activate the Report
in ‘Create’ or ‘Alter’ Mode. In other words, the Report is started in the Edit Mode. In case of
‘Create’ Action, the user enters the Report in order to add values, whereas in case of ‘Alter’, the
user enters the Report to modify the already created values.

These actions help the user to key in the relevant values. The values thus entered may or may not
be stored. The treatment of values depends on need. The values thus entered in the Report by
the user, if required to be retained, can be stored as a part of Tally Database or Configuration File.

o As discussed in the Topic on Variables, all the persistent variable values can be stored in a
Configuration File Tallysav.TSF for subsequent sessions.

o The values entered in the Report can also be stored as a part of the Tally Database

To store the values as a part of Tally Database, the Report must be associated to a Data Object.
For example, Group, Ledger, Voucher, etc., are some of the Data Objects available in Tally.

For instance, in order to design an interface to create a Ledger:
o The Object ‘Ledger’ must be associated to the Report using Report Attribute ‘Object’

o Values entered by the user in the Fields within the Report must be stored in relevant
Methods using Field Attribute ‘Storage’

Example:

/* The following code demonstrates the usage of Action ‘Create’ and Attribute ‘Storage’ at Field Definition to
store the values entered within the relevant Object associated at Report Level®/

[#Menu : Gateway of Tally]
Add : Key Item : Ledger Creation : L : Create : Create Ledger
[Report : Create Ledger]
Form : Create Ledger Object: Ledger

,; Object Association done at Report Level

[Form : Create Ledger]
Parts : Create Ledger
[Part : Create Ledger]
Lines : Store LedgerName, Store LedgerGroup

[Line : Store LedgerName]

101

Tty

Actions in TDL POWER OF SIMPLICITY

Fields : Short Prompt, Name Field
Local : Field : Short Prompt : Info : "Name :"
Local : Field : Name Field : Storage : Name

/* Storing value entered by user in Internal Method Name available within Object associated at Report™/

[Line : Store LedgerGroup]

Fields : Short Prompt, Name Field

Local : Field : Short Prompt : Info : "Under :"
Local : Field : Name Field : Storage : Parent
Local : Field : Name Field : Table : Group

/* Similarly, Parent Method is stored with the user entered value which is considered as the Group of the
Ledger created. Also Group is a default Table/Collection to display all the default as well as the user defined
Groups. Field Attribute Table helps to restrict the user input to a predefined list*/.

In this example:

o The Default Menu Gateway of Tally has been altered to add a new ltem ‘Ledger Creation’,
which allows the user to create a Ledger.

o Report Create Ledger associates the Object ‘Ledger’ to it, which indicates that the
Report is meant for creating an instance of the Object ‘Ledger’.

o Name and Group of the Ledger are stored in Internal Methods Name and Parent.
Example:
;; The following code demonstrates the usage of ‘Alter’ Action at Button

[Button : My Reco Button]

;; Button meant to do Bank Reconciliation
Key : Alt + F5

Action : Alter : Bank Recon

;7 ‘Alter’ Action to trigger Bank Recon Report in ‘Alter’ Mode

Title : “Reconcile”

. Associating the Button to the Report
[Form : My Bank Vouchers]

Button : My Reco Button

In this example:

o Button My Reco Button is defined with ‘Alter’ action to alter the Report Bank Recon on
pressing the Alt + F5 Key. It is used for entering dates in the Bank Reconciliation Report.

o The Button My Reco Button is associated to the Form My Bank Voucher

102

Tty

POWER OF SIMPLICITY Actions in TDL

Example:

.. The following code demonstrates the usage of Alter Action at Field

[#Menu : Gateway of Tally]
Add : Key Item : Ledger Display : L : Display : My Ledger
[Report : My Ledger]
Form : My Ledger
[Form : My Ledger]
Parts : My Ledger Height : 100% Page Width : 100% Page
[Part : My Ledger]
Lines : My Ledger
Repeat : My Ledger: Ledger

;; Ledger is a default collection of Ledger Objects

Scroll : Vertical
[Line : My Ledger]
Fields : My Ledger
Key : Line Object Enter Alter, Line Click Object Enter Alter

;;The above default Keys act upon ‘Line’ Definition and the action ‘Alter Object’ is associated with the Keys,
provided the current Report is in ‘Display’ Mode

[Field : My Ledger]
Set As : $Name
Variable : Ledger Name

;;Variable ‘Ledger Name’ retains the Ledger selected by the user for the subsequent report

Alter : Create Ledger

., ‘Alter’ Action is used to activate the Report in ‘Alter’ Mode
;; ‘Create Ledger’ is a user defined Report defined while Ledger Creation
In the example mentioned above:

o Two default Keys are associated to a ‘Line’ Definition, that allows a selection of any of the
lines, from the set of repeated lines.

o Action associated with these Keys is ‘Alter Object’, which means that on hitting the Key, the
Object associated with the current Line must be altered.

o Mode: Display specified in the Keys signifies that current report must be in Display Mode.

o ‘Alter’ Action used at the ‘Field’ definition prompts the report from being activated on the
current field, which must be in ‘Alter’ Mode.

103

Tty

Actions in TDL POWER OF SIMPLICITY

3.5 Actions - Create Collection, Display Collection and Alter Collection
Action - Create Collection

A Menu Item can be used to create Objects in a Collection with the action ‘Create Collection’. This
action is generally used for creation of Masters such as Groups, Ledgers, Stock Items, Voucher
Types, etc. ‘Create Collection’ fetches a report through the defined Collection. A report displayed
through this action, is displayed in ‘Create’ mode.

Example:

,; The following code demonstrates the usage of ‘Create Collection’ Action
[#Menu : Gateway of Tally]

Add : Key Item : Ledger : L : Create Collection : Ledger

., where a Ledger is a predefined Collection in DefTDL

One can also use the action ‘Create’ in place of ‘Create Collection’, to create Objects in a
collection. The only difference is that ‘Create’ explicitly calls a Report and ‘Create Collection’
requires a collection. ‘Create Collection’ executes the same report through the defined Collection.

Action - Display Collection

A Menu Item or a Button can be used to display a popup of Object names in a Collection, which in
turn, can trigger a Report. On choosing an Object from the popup, a report in Display mode is
triggered by the action ‘Display Collection’. This action can be used for displaying the Masters or
Reports pertaining to Groups, Ledgers, Stock ltems, etc.

Example:

;; The following code demonstrates the usage of ‘Display Collection’ Action
[#Menu : Gateway of Tally]

Add : Key Item : Ledger : L : Display Collection : Ledger

;; where Ledger is a predefined Collection in DefTDL.

Though the Action name is ‘Display Collection’, ‘Display’ is meant for the subsequent Report,
which will be displayed on selection of an Object. Here, the Report is in ‘Display’ mode.

Action - Alter Collection

The Action ‘Alter Collection’ is similar to ‘Display Collection’, but it triggers the Report in ‘Alter’
mode. This Action is generally used to alter the Masters such as Groups, Ledgers, Stock Items,
Voucher Types, etc.

Example:

;; The following code demonstrates the usage of ‘Alter Collection’ Action

[#Menu : Gateway of Tally]
Add : Key Item : Ledger : L : Alter Collection : Ledger

;; where Ledger is a predefined Collection in DefTDL

Though the Action is ‘Alter Collection’, ‘Alter’ is meant for the subsequent Report, which will be
displayed on the selection of an Object.

104

Tty

POWER OF SIMPLICITY Actions in TDL

‘Display Collection’, ‘Create Collection’ and ‘Alter Collection’ routes the final report through a
Collection. Let us understand some critical Attributes required to achieve these actions.

Collection Attributes - Trigger, Variable and Report

The Collection attributes ‘Trigger’, ‘Variable’ and ‘Report’ support the actions ‘Create Collection’,
‘Display Collection’ and ‘Alter Collection’, respectively.

[Collection : My Ledger]

Type : Ledger
Trigger : LedList Select
Report : Selected Ledger

Display Variable : Ledger Name

Attribute - Trigger

The Collection attribute ‘Trigger’ is used to popup the Object names from a Collection. For
example, a List of ltems pop up when you choose the default Menu ltem ‘Stock Item’.

Syntax
[Collection : <Collection Name>]
Trigger : <Report Name>
<Report Name> is the Interface used to display the Object names in a Collection.
Attribute - Report

The Collection Attribute ‘Report’ displays a Report based on the Object selected. For example,
Item Monthly Summary is a default Report being displayed when you choose a particular stock
item.

Syntax
[Collection : <Collection Name>]
Report : <Report Name>
where,
<Report Name> is the final report displayed, when an Object is selected from the Collection.
Attribute - Variable

The Collection Attribute ‘Variable’ stores the name of the selected Object. This attribute is used
with actions, Display Collection and Alter Collection.

Syntax
[Collection : <Collection Name>]
Variable : <Variable Name>

where,

<Variable Name> is the variable storing the Object name for the subsequent Report to be
displayed.

105

Tty

Actions in TDL POWER OF SIMPLICITY

Example:

[Collection : Stock Items in Display Collection]

Type : Stock Item

Trigger : Stock Item Selection Interface
Report : Stock Item Final Report
Variable : Stock Item Name

4. Object Specific Actions
Some of the Object Specific Actions are discussed in this section:
4.1 Menu Actions — Menu Up, Menu Down, Menu Reject

Actions ‘Menu Up’, ‘Menu Down’, ‘Menu Reject’, etc., act upon Menu. They are associated to all
Menus (Default as well as User Defined TDL) through the declaration [System: Menu Keys]

Example:

[Key : Menu Up]
Key : Up

Action : Menu Up

[Key : Menu Down]
Key : Down
Action : Menu Down

[Key : Menu Reject]
Key : Esc
Action : Menu Reject
[System : Menu Keys]
Key : Menu Down, Menu Up, Menu Reject

[System: Menu Keys] declares a list of Keys commonly required for a Menu. Since all common
menu operations like Scroll Up, Scroll Down, Drill down, etc., are declared here, a new Menu
added does not require these keys to be associated, as they are inherited from above declaration.

4.2 Form Actions - Form Accept, Form Reject, Form End

Actions ‘Form Accept’, ‘Form Reject’, ‘Form End’, etc., act upon Form. They are associated to all
Forms (Default as well as User Defined TDL) through the declaration [System: Form Keys].

o Action Form Accept saves the current Form.
o Action Form Reject rejects the current Form, i.e., the current form is quit without saving.

106

Tty

POWER OF SIMPLICITY Actions in TDL

Example:

[Key : Form Accept]

Key : Ctrl + A
Action : Form Accept
Mode : Edit

[Key : Form Display Reject]

Key : Esc
Action : Form Reject
Mode : Display

[Key : Form End]
Key : Ctrl + End
Action : Form End
[System : Form Keys]
Key : Form Accept, Form Display Reject, Form End

[System: Form Keys] declares a list of Keys commonly required for a Report. Since all common
Form operations like Save Form, Reject Form, Form End, etc., are declared here, a new Form
added does not require these keys to be associated, as they are inherited from above declaration.

4.3 Part Actions — Part Home, Part End, Part Pg Up

The Actions ‘Part Home’, ‘Part End’, ‘Part Pg Up’, etc., act upon a Part. These keys are
associated with all the Forms (Default TDL codes as well as User Defined TDL codes) through the
declaration [System: Form Keys].

o Action Part Home positions the cursor to the beginning of the current Part.

o Action Part End positions the cursor to the end of the current Part.

o Action Part PgUp is used to quickly scroll the page to view the previous page.
Example:

[Key : Part DisplayHome]

Key : Home
Action : Part Home
Mode : Display

[Key : Part Display End]

Key : End

107

Tty

Actions in TDL POWER OF SIMPLICITY

Action : Part End
Mode : Display
[Key : Part Display PgUp]
Key : PgUp
Action : Part PgUp
Mode : Display
[System : Form Keys]
Key : Part Display Home, Part Display End, Part Display PgUp

[System: Form Keys] declares a list of Keys commonly required for a Part. Since all common
Part operations like Part Home, Part End, Part PgUp, etc., are declared here, a new Part added
does not require these keys to be associated, since they are inherited from the above declaration.

4.4 Line Actions - Explode, Display Object, Alter Object
Line Actions - Explode, Display Object, Alter Object, etc., act upon a Line.

o Action Explode explodes a line further to display all the explode details specified in the
Line Attribute ‘Explode’.

o Action Display Object is used to display the Object in context of the current line.
o Action Alter Object is used to alter the Object in context of the current line.
Example:

[Key : Line Explode]
Key : Shift + Enter
Action : Explode

[Key : Line Object Display]
Key : Enter
Action : Display Object
Mode : Display

[Key : Line Object Alter]
Key : Ctrl + Enter
Action : Alter Object
Mode : Display

[System : Form Keys]

108

Tty

POWER OF SIMPLICITY Actions in TDL
Key : Line Explode
Key : Line Object Display, Line Object Alter

[System: Form Keys] declares a list of Keys commonly required for a Line. Since all common
Line operations like Explode, Display Object, Alter Object, etc., are declared here, a new Line
added does not require these keys to be associated, as they are inherited from above declaration.

4.5 Field Actions - Field Copy, Field Paste, Field Erase, Calculator
The Actions ‘Field Copy’, ‘Field Paste’, ‘Field Erase’, ‘Calculator’, etc., act on Fields.

o Action Field Copy copies the current field (Field where the cursor is positioned) contents in
the OS clipboard, which will be available later.

o Action Field Paste pastes the clipboard contents to the current Field.

o Action Field Erase is used to erase the contents of the current Field at a stretch, without
hitting the Backspace or Delete Key.

o Action Calculator is used for Fields that require some computation, the result of which is to
be returned to the Field. Fields taking Amounts / Numbers as value require this action.

Example:
[Key : Field Copy]

Key : Ctrl + Alt + C

Action : Field Copy
[Key : Field Paste]

Key : Ctrl + A1t + V

Action : Field Paste

[Key : Field Erase]

Key : Esc
Action : Field Erase
Mode : Edit

[Key : Calculator]

Key : Alt + C
Action : Calculator
Mode : Edit

[Field : NumDecimals Field]
Key : Calculator

[System : Form Keys]

109

Tty

Actions in TDL POWER OF SIMPLICITY
Key : Field Erase
Key : Field Copy, Field Paste

[System: Form Keys] declares a list of Keys that are commonly required for any Field. Since all
the common Field operations like ‘Field Copy’, ‘Field Paste’, ‘Field Erase’, etc., are declared here, a
new Field added does not require these keys to be associated, since they are inherited from the
above declaration. The Action ‘Calculator’ is not required for all the Fields; hence, it has not been
declared in Form Keys usage List. It has been associated to the Fields where it is required. In the
above example, ‘NumDecimals Field’ is a numeric field which may require calculations.
Therefore, the ‘Calculator’ Key, associating the Action Calculator, is attached to the Field.

Learning Outcome

o

O Oo o o o o

Actions are activators of a specific task with a definite result. An Action always originates
from User Interface (Ul) Objects Menu, Form, Line or Field.

Global Actions and Object Specific Actions are the different types of actions used in TDL.
Actions can be associated at various levels:

Action Association at Menu Definition

Action Association at Button/Key Definition

Action Association at Field Definition

An Action is always executed with respect to two contexts:

m Originator

= Executer

Some of the frequently used Global Actions are:

= Menu

Modify object

= Browse URL

= Create and Alter

Some of the Object Specific Actions are:

= Menu Actions — Menu Up, Menu Down, Menu Reject

m Form Actions — Form Accept, Form Reject, Form End

m Part Actions — Part Home, Part End, Part Pg Up

» Line Actions — Explode, Display Obiject, Alter Object

m Field Actions — Field Copy, Field Paste, Field Erase, Calculator

110

Tty

POWER OF SIMPLICITY

User Defined Fields

Introduction

In Tally.ERP 9, the structure of an object, the data type and storages required in order to store the
data are all pre-defined by the platform. All the data is stored in the Tally database. By default,
data is always stored in pre-defined storages only.

There may be instances when additional information needs to be stored in the existing objects.
This need gave rise to concept of User Defined Fields (UDF). A UDF can be used to store
additional information to the Tally database. In other words, UDFs store additional information into
the existing objects.

1. What is UDF?

User Defined Fields have a storage component defined by the user. UDFs are stored in the
current object context. They can be of any Tally data type such as String, Amount, Quantity, Rate,
Number, Date, Rate of Exchange and Logical.

Defining UDFs does not serve the purpose, unless it is associated with one or more internal
object. When a UDF is created and used in an already existing report, the data is stored in the
context of the object, i.e., it is always associated to the object to which the report is associated,
i.e., the object in context.

1.1 Creating a UDF
UDFs should be defined under the section [System: UDF].
Syntax
[System : UDF]
<Name of UDF> : <Data Type> : <Index Number>
Where,

<Name of UDF> Identifies the UDF. Ideally, it should describe the purpose for which it has been
created.

<Data Type> is any of the Tally data types or ‘Aggregate’.
<Index Number> can be any number between 1 and 65536.

Numbers falling between 1 to 9999 and 20001 to 65536 are opened for customisation, and those
between 10000 to 20000 are allotted for Common development in TSPL. The user can create
65536 UDFs of each data type.

i

otes The index numbers 1 to 29 are already used for Default TDL.
0

111

Tty

User Defined Fields POWER OF SIMPLICITY

Example:

[System : UDF]
MyUDF 1 : String : 20003
MyUDEF 2 : Date: 20003

The advantage of UDF in Tally is that it automatically attaches with the current object. No specific
declaration is required for object association, when the UDF is defined within system definition.
1.2 Storing User Inputs in the UDF
The attribute Storage is used to store the value entered in the field, in the current object context.
Syntax

Storage : <Default Storage/Name of UDF>
Where,

<Name of UDF> identifies the UDF. Ideally, it should describe the purpose for which it is created.
Example:

[Field : NewField]
Use : NameField

Storage : MyUDF

1.3 Retrieving the value of UDF from an Object

In the context of the current object, the value of a UDF can be accessed by prefixing $ to the UDF
name.

Syntax
$<Name of UDF>
Example:

[Field: NewField]
Use : NameField

Set As : SMyUDF

2. Classification of UDF’s

The UDFs are classified into two types, which are as follows:
o Simple UDF
o Complex/Compound/Aggregate UDF

2.1 Simple UDF

It can store one or more values of a single data type. A UDF used for storage, stores the values in
the context of the object associated at Line/Report level, by default. Only one value is stored in
this case.

12

Tty

POWER OF SIMPLICITY User Defined Fields

UDF to store a single value

The following example code snippet demonstrates how a UDF can be made use of to store a
single value:

Example:

[Report : CompanyVehicles]

Object : Company

[Field : CVeh]

Use : Name Field
Storage : Vehicle
Unique : Yes

[System : UDF]
Vehicle : String : 700
The object is associated at the Report Level. The value stored in a UDF is in the context of
‘Company’ Object in this case. The UDF ‘Vehicle’ stores a single string value.
UDF to store multiple values

When multiple values of the same data type are to be stored, then the ‘Repeat’ attribute of Part is
used. The field of the line uses the same UDF name in the ‘Storage’ attribute.

Syntax
Repeat : <Line name > : < Name of UDF >
Where,
<Line Name > is the name of the line to be repeated.
<Name of UDF> identifies the name of the UDF to store multiple values
The example in the section “UDF to store single value” can be modified to store multiple values.
Example:

[Part : CompVeh]

Line : CompVeh
Repeat : CompVeh : Vehicle
Break On : SIsEmpty : $Vehicle

Scroll : Vertical

113

Tty

User Defined Fields POWER OF SIMPLICITY

In this scenario, multiple values of type String can be stored under the object Company.
Creating collection of Values Stored in UDF
Multiple values stored in a UDF can be displayed as Table in a field. The Collection is defined as:

Syntax
[Collection : <Collection Name>]
Type : <UDF Name> : <Object Name>
Format : $<UDF Name>, 20

Example:

[Collection : CMP Vehicles]

Type : Vehicle : Company
Childof : ##SVCurrentCompany
Format : SVehicle, 20

Title : "Company Vehicles"

It creates a collection of values stored in the UDF of the current object ‘Company’. This collection
can be used in the ‘Table’ attribute of ‘Field’ definition. When the cursor is in the defined field, the
values stored in the UDF will be displayed as a popup table.

Consider the following example:

[Field : EI Vehicles Det]
Use : Short Name Field
Table : CMP Vehicles, Not Applicable
Show Table : Always

A popup table is displayed when the cursor is placed in the field ‘El Vehicles Det’. The Table
contains values stored in the UDF which are Not Applicable as a list.

2.2 Aggregate UDF

A Simple UDF can only store values of a single data type; so, when multiple values of different
data types are required to be stored as one entity, an Aggregate UDF can be used.

Aggregate UDFs are very useful for storing multiple values and repeated values. An aggregate
UDF is a combination of different types of UDFs. Aggregate UDFs can be used to store user data
in a tabular format, attached to any internal object, and can be used as a collection of UDFs.

In other words, an Aggregate UDF comprises of a set of fields repeating more than once. The
output can be stated in the form of a record consisting of fields of different types and sizes. When a
line is repeated over an Aggregate UDF, it associates all its storage components (same or
different data types) as a single unit.

Creating an Aggregate UDF

114

Tty

POWER OF SIMPLICITY User Defined Fields

To create an Aggregate UDF, the data type ‘Aggregate’ is used while defining the UDF. The
components are defined as simple UDFs.

Syntax
[System : UDF]

<Name of UDF> : Aggregate : <Index Number>
Example:

A Company wants to create and store multiple details of company vehicles.The details required
are: Vehicle Number, Brand, Year of Mfg., Purchase Cost, Type of Vehicle, Currently in Service,
Sold On date and Sold for Amount.

[System : UDF]

Company Vehicles : Aggregate : 1000
VVehicle Number : String : 1000
VBrand : String : 1001
VYear of Mfg : Number : 1000
VPurchase Cost : Amount : 1000
VType of Vehicle : String : 1002
VCurrently in Service : Logical : 1000
VSold On date : Date : 1000
VSold for : Amount : 1001

To store the required details, simple UDFs are defined and to store them as one entity, a UDF of
type ‘Aggregate’ is defined, as shown in the example.

Using an Aggregate UDF

An Aggregate UDF defined does not associate each component field with it. The association will
takes place only when a Line is repeated over an Aggregate UDF and within that Line, there are
fields which store the value into the component UDFs.

Syntax

Repeat : <Line name> : <Name of Aggregate UDF>
Where,

<Name of Aggregate UDF> is the name of the UDF defined with ‘Aggregate’ data type.
Example:

[Part : Comp Vehicle]
Line : Comp VehLn

Repeat : Comp VehLn : Company Vehicles

115

Tty

User Defined Fields POWER OF SIMPLICITY

BreakOn : $$IsEmpty : S$SVBrand

[Field : CMP VBrand]
Use : Short Name Field
Storage : VBrand

The Line is repeated over the Aggregate UDF and the Simple UDFs are entered in the fields.

Using Aggregate UDF in a Sub-Form

‘Subform’ is an attribute that is used within a Field definition. It relates to a report (not Form) and
can be invoked by a field. This attribute is useful to activate a report within a report, perform the
necessary action and return to the report used to invoke the Subform. There is no limit on the
number of Subforms that can be used at the field level.

Syntax
[Field : Field Name]

Sub Form : <Report Name> : <Condition>
Where,
<Report Name> is the name of the Report to be displayed.

<Condition> could be any expression, which evaluates to a logical value. The report will be
displayed only when the condition is True.

A Sub Form is not associated to the Object at the Report level. An Object associated to the Field
in which the Sub Form is defined, gets associated to the Sub Form. A Sub Form will inherit the
info object from the Field which appears as a pop-up.

The Bill-wise Details is an example of a Subform attribute. This screen is displayed as soon as
an amount is entered for a ledger whose Bill-wise Details feature has been activated.

Example:

The following code snippet uses a Subform to enter the details of bills when the Bill Collection
ledger is selected, while entering a Voucher. The values entered in the Subform are stored in an
Aggregate UDF. This UDF is attached to the object to which the field displaying the Subform is
associated. Here, it is the Object of a Ledger Entries Collection.

The following code is used to associate a Subform to the default Field in a voucher.
[#Field : ACLSLed]

Sub Form : BillDetail : ##SVVoucherType = "Receipt"+

and $LedgerName = "Bill Collection"

116

Tty

POWER OF SIMPLICITY

User Defined Fields

The Name Report for the Subform uses an Aggregate UDF to store the data. A Line is repeated

over the Aggregate UDF at the Part level.

[Part : BillDetails]

Scroll : vertical

Line : BillDetailsH, BillDetailsD
Repeat : BillDetailsD : BAggre
Break After : $$Line=2

The Attibute Storage is used for all the fields.

[Field : CustNamel]
Use : Name Field
Storage : CustName

The UDF is defined as follows:

[System : UDF]

CustName : String : 1000
BillNo : String : 1001
BillAmt : Amount : 1001
EPrintl : String : 1002
BAggre : Aggregate : 1000

Currently, UDF values can be retained only if the sub-objects are stored as is.

3’ However, in sub-objects where the accepted expense ledger information is appor-
NoteS tioned against inventory, they are not stored independently but are afttributed to the
item cost once the object is accepted. For example, in purchase or manufacturing

journal vouchers, the additional cost table is not retained independently within the

object and is apportioned against the item cost while accepting the voucher. Hence,

the UDF cannot be added and retained in these sub-objects.

Learning Outcome

The value is stored in the context of the current Object.

O o o o o a

A Simple UDF can store one or more values of a single data type only.
Aggregate UDFs are very useful for storing multiple values and repeated values.

UDFs are stored in the context of the current Object. They can be of any Tally data type.
UDFs should be defined under the section [System: UDF].
The attribute ‘Storage’ in a Field definition is used to store the value entered in a Field.

17

Tty

POWER OF SIMPLICITY

Reports, Printing and Validation Controls

Introduction

In previous lesson, the significance and usage of User Defined Fields was explained. The
classification and creation of UDFs was also discussed. This lesson is dedicated to Report
creation and printing. The types of reports and the different ways of printing them will be explained
in detail.

1. Reports

In Tally.ERP 9, financial statements are generated as Reports, based on the vouchers entered till
date. Balance Sheet, Profit & Loss A/c, Trial Balance, etc., are some default Reports in Tally.

Normally, a business requires Reports in any of the following formats:
o Tabular Report: A Report with fixed number columns, which can be configured.
o Hierarchical Report: A Report designed in successive levels or layers.

o Column-Based Reports: A Report with multiple columns. TallyERP 9 caters to generating all
these types of Reports.

1.1 Tabular Reports

They have the simplest format of all the Report formats. A typical Tabular report has the following
components:

o Report Title: It contains the Name of the Report, the Title for each column, the
Day/Period for which a Report is generated, etc.

o Report Details: It contains the actual information.
o Report Total: It contains the Total of the respective columns.

A typical Tabular Report has a fixed number of columns and is interactive, i.e., an end user can
change its appearance. Day Book, Stock Summary, Trial Balance, Group Summary, etc., are
some default Tabular Reports in Tally. The Tabular Report ‘Stock Summary’ is shown in Fig. 9.1

Designing a Tabular Report

A typical Tabular Report will have a Title Line, a Details Line, and an optional Total Line. The
Details Line will be repeated over the objects of a Collection.

A Tabular Report can be made Interactive by adding the following features:

o Adding Buttons to change the period, to change the contents of the Report, etc. (As
discussed in lesson 5: Variables, Buttons, Keys)

o Adding explosions to the lines

119

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

ABC Company Ltd cirl + [
ABC Company Ltd
Particulars 1-Apr-2005 to 1-Aug-2008
Closing Balance
Cuantity Rate “alue

Accessories 790 Nos
Components 2,573.22
Computers {-}9% Hos
Defective tems 600.00
Dot Matrix Printers 14,000.00
Laser Jet Printers 1T, 400.00
Timber 200 MT §,364.83 12,72 96575

Grand Total 13,23,331.73
0: Quit | | | | | | |E: Remave Line| 5: Select

Figure 9.1 Stock Summary

Displaying the Exploded Part

Tally.ERP 9 allows the user to display additional information about the current line object, when
the key combination SHIFT + Enter is pressed. This functionality is called as ‘explosion’ in Tally.
Line attributes Explode and Indent, and the function $$KeyExplode, are used for the same.

Attribute - Explode

The attribute ‘Explode’ refers to an attribute of the line, which is used to take the current data from
the Line Object. A Part is displayed after the process of explosion is complete.

Syntax
Explode : <Part Name> : <Logical Condition>
Where,
<Part Name> is the name of the Part which displays additional information about the Line object.
<Condition> if True, will result in an explosion.

Function - $$KeyExplode

$$KeyExplode function gives the current status of the keys Shift and Enter. This is used as a
condition to check if the user has pressed the Shift+Enter Key combination.

120

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

Example 1: Simple Tabular Report
Let us consider writing a simple Trial Balance.
[Part : My TB Part]

Lines : My TB Title, My TB Details

Repeat : My TB Details : My TB Groups

Scroll : Vertical

Iy TE Repart ABC Company Ltd Ctrl + 1 B
Name [Parent [Dehit [Credit
Capital Account 1 Primary 55,00,000.00
Current Assets 1 Primary 3,16,47,171.92
Current Liabilities 1 Primary 51,11,656.90
Fixed Assets 1 Primary 34,37,489.68
Indirect Expenses 1 Primary 14,500.00
Investments 1 Primary 5,00,000.00
Loans {Liability) 1 Primary 27,27,116.03
Sales Accounts 1 Primary 6,05,000.00
TOTAL 3.55,84,661.60 1,39,58,272.93

Figure 9.2 Simple Trial Balance Report
Example 2: A Simple Interactive Tabular Report

A report showing all the Primary groups can be created and exploded by pressing Shift + Enter to
view the sub groups. The ledgers can subsequently be viewed on the same screen with an indent
for each level.The report is as shown in Figure 9.3

The following code snippet displays the exploded part:
[Line : My TB Details]

Fields : My TB Name Field, My TB ParName Field
Right Fields : My TB Dr Amt Field, My TB Cr Amt Field

Explode : My TB Group Explosion : $$IsGroup and SSKeyExplode

[Field : My TB Name Field]

121

Reports, Printing and Validation

Tty

POWER OF SIMPLICITY

Use : Name Field

Set as : SName

Variable : MyGroupNamel

My TB Report ABC Company Ltd cirl + 1 B
Name [Parent [Dehit Credit
Capital Account 1 Primary 55,00,000.00
Balasubramanian's Share Capital A/'c Capital Account 7,13,000.00
Kavitha's Share Capital Aic Capital Account 2,76,500.00
Mohan's Share Capital Aic Capital Account 15,00,000.00
Priya Ganesh's Share Capital A/c Capital Account 5,65,500.00
Sathish's Share Capital Aic Capital Account 14,00,000.00
Suresh's Share Capital Afc Capital Account 4,75,500.00
\ijayakumar's Share Capital Afc Capital Account 5,69,500.00
Current Assets 1 Primary 3,16,47,171.92
Current Liabilities 1 Primary 51,11,656.90
Fixed Assets 1 Primary 34,37,489.68
Indirect Expenses 1 Primary 14,500.00
Investments 1 Primary 5,00,000.00
Loans {Liability) 1 Primary 27,27,116.03
Sales Accounts 1 Primary 6,05,000.00
TOTAL 3.55,84,661.60 1,39,58,272.93

Figure 9.3 Simple Interactive Tabular Report
The code for the exploded part is as follows:

[Part : My TB Group Explosion]

Lines : My TB Details Explosion
Repeat : My TB Details Explosion: My TB GroupsLedgers
Scroll : Vertical

[Line : My TB Details Explosion]
Fields : My TB Name Field, My TB ParName Field

Right Fields : My TB Dr Amt Field, My TB Cr Amt Field

Explode : My TB Group Explosion : $$IsGroup and $SKeyExplode
Indent : 2% $SExplodelevel
Local : Field : Default : Delete : Border

122

POWER OF SIMPLICITY

Reports, Printing and Validation

The Collection My TB GrouplLedgers is a union of collections of Type ‘Group’ and ‘Ledger’,
respectively.

[Collection My TB GroupsLedgers]

Collection My TB Groups, My TB Ledgers
The Variable MygroupName1 is used in Child Of attribute, under the collections ‘My TB Groups’

and ‘My TB Ledgers’.

[Collection My TB Groups]
Type Group
Child Of #MyGroupNamel
[Collection My TB Ledgers]
Type Ledger
Child Of #MyGroupNamel

When the user presses the Shift + Enter keys, then the exploded part shows the Sub-groups
under the group in the current line, as shown in Figure 9.4.

ABC Company Ltd cirl + 1 B
Name Parent Dehit Credit
Capital Account 1 Primary 55,00,000.00
Current Assets 1 Primary 3,16,47,171.92
Bank Accounts Current Assets 38,35,633.77
Cash-in-hand Current Assets 1,83,62,572.24
Loans & Advances {Asset) Current Assets 16,08,900.00
Stock-in-hand Current Assets 13,23,331.73
Sundry Debtors Current Assets 62,66,734.18
East Debtors Sundry Debtors 2,33,900.00
Morth Debtors Sundry Debtors 30,800.00
South Debtors Sundry Debtors 22,63,086.25
Sundry Debtors - Overseas Sundry Debtors 14,949.80
West Debtors Sundry Debtors 4,53,000.00
Amar Computer Peripheralg Sundry Debtors 12,69,680.00
Amrita Sundry Debtors 4,000.00
Customer A Sundry Debtors 14,000.00
Hindustan Timbers Sundry Debtors 10,000.00
Janata Timbers Sundry Debtors 5,90,001.75
Nirmaan Timbers Sundry Debtors 10,64,316.38
Advance Tax Current Assets 2,50,000.00
Current Liabilities 1 Primary 51,11,656.90
Fixed Assets 1 Primary 34,37,489.68
Indirect Expenses 1 Primary 14,500.00
Investments 1 Primary 5,00,000.00
Loans {Liability) 1 Primary 27,27,116.03
Sales Accounts 1 Primary 6,05,000.00
TOTAL 3,55,84,661.60 | 1,39,58,272.93

Figure 9.4 Interactive Tabular Report

When the keys Shift + Enter are pressed by the user, one more exploded part shows the Ledgers
under the current Sub-group, as shown in Figure 9.5.

123

Tty

POWER OF SIMPLICITY

Reports, Printing and Validation

Trial Balance ABC Company Ltd ctrl + i B4
Name Parent Debit Credit
Capital Account 1 Primary 55,00,000.00
Current Assets 1 Primary 3,16,10,171.92
Bank Accounts Current Assets 37,98,633.77
Cash-in-hand Current Assets 1,83,52,572.24
Loans & Advances (Asset) Current Assets 16,08,900.00
Stock-in-hand Current Assets 13,23,331.73
Sundry Debtors Current Assets 62,76,734.18
East Debtors Sundry Debtors 2,33,900.00
North Debtors Sundry Debtors 30,800.00
South Debtors Sundry Debtors 22,63,086.25
sundry Debtors - Overseas Sundry Debtors 14,949.80
West Debtors Sundry Debtors 4,53,000.00
Amar Computer Periphérals Sundry Debtors 12,69,680.00
Amrita Sundry Debtors 4,000.00
Customer A Sundry Debtors 14,000.00
Janata Timbers Sundry Debtors 5,90,001.75
Nirmaan Timbers Sundry Debtors 10,64,316.38
Advance Tax Current Assets 2,50,000.00
Current Liabilities 1 Primary 51,11,656.90
Direct Expenses 1 Primary 33,240.00
Fixed Assets 1 Primary 34,62,489.68
Indirect Expenses 1 Primary 31,70,616.61
Investments 1 Primary 5,00,000.00
Loans (Liability) 1 Primary 27,27,116.03
Purchase Accounts 1 Primary 2,34,71,437.50
Sales Accounts 1 Primary 4,75,92,847.50
TOTAL 6,22,47,955.71 |6,09,31,620.43

Figure 9.5 Interactive Tabular Reports - Sub Groups

1.2 Hierarchical Report (Drill down Report)

A Tally application provides a simple way of navigating from one report to another, which is
commonly referred to as a drill down. A Drill Down facility moves from one report to the other to
give a detailed view based on the selection in the current report. A user can return to the first
Report from the detailed view. A typical drill down in TallyERP 9 starts from the Report and
reaches the Voucher Alteration screen.

Designing Hierarchical Reports

Hierarchical Reports can be designed by incorporating the following changes to a Tabular Report:
Variable attribute of Report definition

Child Of attribute of Collection definition

Display and Variable attributes of Field definitions

o Variable Definition

o o o

Example:

The following code snippet demonstrates the Drill down action, which is based on the Group
Name displayed in the field. The Drill down action is achieved by specifying the two attributes
‘Variable’ and ‘Display’ at the field level.

[Field MyTB Name]
Width 120 mms
Set as SName

124

Tty

POWER OF SIMPLICITY Reports, Printing and Validation
Variable : GroupVar
Display : My Trial Balance : $$IsGroup

A Variable is defined as ‘Volatile’ and is associated at Report. The attribute ‘Variable’ of Report
definition is used to associate the Variable with the report.

[Variable : Group Var]
Type : String
Default o
Volatile : Yes

[Report : My Trial Balance]
Form : My Trial Balance
Variable : GroupVar

The same Variable is used in the ‘Childof’ attribute of the ‘Collection’ definition. When a line is
repeated over this collection in the report; when the user presses the Enter key, the Report being
displayed will have the objects whose Parent Name is stored in the variable.

[Collection : My Collection]
Type : Group

Childof : ## GroupVar

125

Reports, Printing and Validation

Tty

POWER OF SIMPLICITY

The following screen is displayed when the user selects the option from the Menu:

My TE Report

ABC Cormpany Ltd

ctrl + M B

Name | Parent Dehit Credit
Capital Account 1_Primary 55,00,000.00
Current Assets 1 Primary 3,16,47,171.92
Current Liabilities 1 Primary 51,11,656.90
Fixed Assets 1 Primary 34,37.489.68
Indirect Expenses 1 Primary 14,500.00
Investments 1 Primary 5,00,000.00
Loans (Liability) 1 Primary 27.27,116.03
Sales Accounts 1 Primary 6,05,000.00

TOTAL

3,55,84,661.60

1,39,58,272.93

Figure 9.6 Trial Balance Report

When the key Enter is pressed by the user, the next screen displays the Sub Groups of the

current Group as shown in Figure 9.7

126

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

| Name | Parent \ Debit | Credit |

Bank Accounts Current Assets 38,35,633.77
Cash-in-hand Current Assets 1,83,62,572.24
Loans & Advances {Asset) Current Assets 16,08,900.00
Stock-in-hand Current Assets 13,23,331.73
Sundry Debtors Current Assets 62,66,734.18
Advance Tax Current Assets 2,50,000.00

TOTAL 3.16.47.171.92

Figure 9.7 Trial Balance - Sub group

1.3 Column Based Reports

The reports in which the number of columns added or deleted as per the user inputs are referred
to as column-based reports. There are four types of column-based reports in Tally, namely
Multi-Column Reports, Auto-Column Reports, Automatic Auto-Column Reports and Columnar
Reports. All these types are explained with examples in this section.

Multi-Column Reports

In Multi-Column reports, a column is repeated based on the criteria specified by user. Trial
Balance, Balance Sheet, Stock Summary, etc., are some default Reports in Tally.ERP 9 having
Multi column feature. Normally, this feature is used to compare values across different periods.

Designing a Multi Column Report

In a Tabular Report, Lines are repeated over a collection. But in a multi-column Report, columns
are repeated in addition to the repetition of the Lines over a Collection. Based on the user input,
columns are repeated. The column Report is used to capture user inputs like Period, Company
Name, Stock Valuation, etc., based on which columns are generated.

Following attributes are used at various components of a Report to incorporate the multi-column
feature:

Attribute - Column Report
Attribute ‘Column Report’ of the ‘Report’ definition, facilitates the creation of multi-column reports.

127

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

Syntax
ColumnReport : <Report Name>
Where,
<Report Name> is the name of the report used to obtain user inputs from the options displayed.
Attribute - Repeat

Attribute ‘Column Report’ is associated with a variable, which in turn is specified in ‘Repeat’
attribute of ‘Report’ definition. Both attributes are specified in ‘Report’ definition to create a
multi-column report.

Syntax
Repeat : Variable
Example: Incorporating Multi Column Feature to Trial Balance report
Step 1 : Using Column Report & Repeat attribute at the Report
By using the ‘Column Report’ & ‘Repeat’ attributes at the Report, “New Column”, “Alter Column”
and “Delete Column” buttons will be automatically added to ‘MulCol TrialBalance’ Report.

[Report : MulCol Trial Balance]
ColumnReport : MyMultiColumns

Repeat : SVCurrentCompany, SVFromDate, SVToDate

128

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

E: Pririt E: Expart m: E-hail 2: Uploac |;: Language §: Suppart Centre !: Help *EFio
Mul Col Trial Balance any Ld ctrl + M [’7
ABC Campany Lid
Particulars 1-Apr-2008 ta 1-Aug-2008
Closing Balance
Diehit I Credit
Capital Account s 00000
Current Assets 3,16,47171.92
Current Liabilities 51,11,656.90
Fixed Assets 34,37 48968
Indirect Expenses 14,500.00
Investments 5,00,000.00

Loans {Liability)

27,27,116.03
Sales Accounts

6,05,000.00

i
GRAND TOTAL 3,55,84,661.60 15&%2Hﬂwr______

Product Wersion Editicn

Corfiguration Calc
Release 3 (Beta% Latest |Edition Gold
‘M Build 96 [Release Latest |Users Linlimited
a5 on 21-Jan-200% 1 TDLs Loaded
POWER OF SIMPLIGITY Aecount [0 talvo@alhsokitions.com
TE]]:{.ERP 9 Serial Mumber TRIFRIETA | Falip.Hat subscription vadd il 13-Fab-2009 g:n?fr?grapsort oDBC Sfr’cxlfcé?’ >

Figure 9.8 Multi Column Report
Step 2: Modifying the System Variables in a multi-column Report

By clicking New Column button, ‘MyMultiColumns’ Report is displayed. In this Report, the user
inputs are captured, which will be reflected in the System Variables.

[Field : My MultiFromDate]
Use : Uni Date Field
Modifies : SVFromDate
[Field : My MultiToDate]
Use : Uni Date Field
Modifies : SVToDate

[Field : My MultiCompany]

Use : Name Field
Modifies : SVCurrentCompany
Table : Company

129

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

Colurnn Detail=s ABC Company Ltd cirl + M B

Column Details
Fram Date : 1-Apr-2007

To Date H 30-Apr-2007

Figure 9.9 Column Details for Multi Column Report

Step 3: Repeating Columns over a Variable and Lines over Objects of a Collection

To repeat columns over a Variable, which is captured in ‘MyMultiColumns’ Report, following needs
to be done at various components of the ‘MulCol Trial Balance’ Report.

1. Report Definition: Repeating over the values of system variable which is captured in
MyMultiColumns Report

[Report : MulCol Trial Balance]
Repeat : SVCurrentCompany, SVFromDate, SVToDate

2. Part Definition: Repeating Lines over objects of a Collection.

[Part : MulCol TB Details]
Lines : MulCol TB Details
BottomLines : MulCol TB Total

Repeat : MulCol TB Details : MulCol TB GroupLed

130

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

3. Line Definition:- Repeating Field

[Line : MulCol TB Details]

Fields : MulCol TB Name Field, MulCol TB Amount Field
Repeat : MulCol TB Amount Field
Pz Prirt IM: E-Mail £ Upload L: Language S: Support Centre | H: Help
Mul Col Trial B ABC Company Ltd crl + b B
ABC Commparry Ltd ABC Comparty Ltd
Particulars 1-Apr-2007 to 1-Aug-2008 1-Apr-2007 to 30-Ap-2007
Closing Balance Closing Balance
Dehit [Credit Diehit I Credit
Capital Account 55,00,000.00 55,00,000.00
Current Assets 3164717192 1,55,62,006.13
Current Liabilities 51,11 656.90 34,61,144.04
Direct Expenses 33,240.00 2,770.00
Fixed Assets 34,37 489.68 19,05,731.88
Indirect Expenses 31 ,88,616.61 1,23,345.91
Investments 4,00,000.00
Loans {Liability) 27,27,116.03 16,62,650.00
Purchase Accounts 2,34,71 437 .50 26,41,980.00
Sales Accounts 4,765,892 84750 73,11,525.00
GRAND TOTAL 6,22,47,955.71 6,09,31,62043| 2,02,25,833.92 1,79,55,319.04
Py Cirl + N
Figure 9.10 Multi Column Report
Auto-Column Report

An Auto column report is one in which multiple columns are repeated by just one click of a button.
Trial Balance, Balance Sheet, Stock Summary, etc., are some of the default Reports in Tally.ERP 9
which have an Auto column feature.

Designing an Auto-Column Report

Auto column Report is similar to a Multi column Report, except that here, a set of columns are
repeated, instead of one. User input will decide the criteria on which the columns are repeated.

Example: Incorporating Auto Column Feature to Trial Balance report
Step 1: Adding the Configuration Screen to the Form

The Button MyAutoButton is added to Form. Through this Button, the configuration Report
‘MyAutoColumns’ is arrived at through the Auto columns mode.

[Form : MulCol Trial Balance]

BottomButton : MyAutoButton,

131

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

[Button : MyAutoButton]

Key : ALt+N

Action : Auto Columns : MyAutoColumns

Title : $SLocaleString:"Auto Column"
Pz Prirt E: Export 111z E-Mail 0: Upload L: Languace 5t Support Certre | H: Help Period
AutoCol Trisl Balance ABC Company Ltd cirl + 14

ABC Company Lid
1-Apr-2007 to 1-Aug-2008
Closing Balance
Diehit [Credit

Particulars

Capital Account
Current Assets
Current Liabilities

3,16,47,171.92
51,11,656.90

Direct Expenses 33240000
Fixed Assets 34,37 48968
Indirect Expenses 31,58 616.61

5,00,000.00

Investments

Loans (Liability)
Purchase Accounts
Sales Accounts

37,27,116.03
2,34,71,437.50
4,75,92,847 50

BN

6,09,31,620.43

GRAND TOTAL 6,22,47,955.71

~ Cirl + N

Figure 9.11 Auto Column Reports

Step 2: The Configuration Report ‘MultiAutoColumns’

1. In configuration Report, the user will be given options like ‘Days’,” Monthly’, Yearly’, ‘Company’,
etc., based on which the columns are repeated. In TDL, these options are external objects.

[Collection : MyAuto Columns]

Title : $SLocaleString : "Column Details"

Object : MyCurrentCompany, MyQuarterly, MyMonthly, MyYearly,
MyHalfYearly

Filter : Belongs

Format : $SName, 15

,; ‘Belongs’ is a system formula which filters the objects

132

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

;; based on the value of the Methods ‘Belongslf’ of all the objects
;; Function Name returns the Name of any given object
[Object : MyCurrentCompany]

Name : $SLocaleString : "Company"

VarName : "SVCurrentCompany"

CollName : "List of Primary Companies"

BelongsIf : $SNumItems : ListOfPrimaryCompanies > 1
IsAgeWise : No

Periodicity : ""

;; Function $$Numltems returns the number of selected companies

;; ‘Belongslf’ is a method of the object MyCurrentCompany, which

;; is used to control the display of the objects in the collection
[Object : MyQuarterly]

Name : $SLocaleString : "Quarterly"
VarName : "SVFromDate, SVToDate"
CollName : "Period Collection"
BelongsIf : "Yes"

IsAgeWise : No

Periodicity : "3 Month"

[Object : MyHalfYearly]

Name : $SLocaleString:"Half-Yearly"
VarName : "SVFromDate, SVToDate"
CollName : "Period Collection"
BelongsIf : "Yes"

IsAgeWise : No

Periodicity : "6 Month"

[Object : MyMonthly]

Name : $SLocaleString:"Monthly"
VarName : "SVFromDate, SVToDate"
CollName : "Period Collection"

133

Tty

POWER OF SIMPLICITY

Reports, Printing and Validation

BelongsIf : "Yes"
IsAgeWise : No
Periodicity : "Month"

[Object : MyYearly]

Name : $SLocaleString:"Yearly"
VarName : "SVFromDate, SVToDate"
CollName : "Period Collection"

BelongsIf : "Yes"

IsAgeWise : No

Periodicity : "Year"

¥ 4

otes Columns can be repeated over any collection. They are not restricted only to a
0 .
Period.

Auto Repeat Columns

ABC Company Lid

Column Details

Auto Repeat Columns
Half-vearly

Repeat Using - I | /onithly
Quarterly

Figure 9.12 Auto Repeat Columns

134

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

2. When the user selects any one of the options, the system variables need to be modified so
that, the columns can be generated in the parent Report on the basis of these values.

[Field : My SelectAuto]

Use : Short Name Field
Table : MyAutoColumns
Show Table : Always

[Field : My AutoColumns]

Use : Short Name Field Invisible : Yes
Set as : STable : MySelectAuto : $VarName
Set always : Yes

Skip : Yes

.. Function Table selects the Object Name from the previous Field My SelectAuto
;; and displays the corresponding method value of VarName
[Field : My CollName]

Use : Short Name Field

Invisible : Yes

Set as : $$8Table : MySelectAuto : $CollName
Modifies : DSPRepeatCollection

Set always : Yes

Skip : Yes

. We are modifying the value of the default variable DSPRepeatCollection by the value of the Method
ColIName from the selected Object DSPRepeatCollection is repeated in the Default Variables
SVCurrentCompany, SVFromDate and SV ToDate, which gets new values for each column

[Field : My StartPeriod]

Use : Short Date Field
Invisible : Yes
Set as : 1f $$IsEmpty:S$STable:MySelectAuto:$Periodicity then+

##SVFromDate else if $$Table : MySelectAuto : +
$Periodicity = "Day" then ##SVFromDate else +

SSLowValue : SVFromDate

135

Tty

Reports, Printing and Validation POWER OF SIMPLICITY
Set always : Yes
Modifies : SVFromDate Skip : Yes

;; Value of Variable SVFromDate is set here based on the Periodicity Method.
. $8LowValue is a Function that returns the beginning date of the Current Period
[Field : My EndPeriod]

Use : Short Date Field
Invisible : Yes
Set as : if $$IsEmpty : STable : MySelectAuto : $Periodicity

then + ##SVToDate else if $$Table : MySelectAuto : +
SPeriodicity = "Day" then $$MonthEnd:#DSPStartPeriod +

else SHighValue : SVToDate

Set always : Yes
Modifies : SVToDate
Skip : Yes

;; Value of the Variable SVToDate is set here based on the Periodicity Method.
;; MonthEnd is a Function that gives the last day for a given month
[Field : My SetPeriodicity]

Use : Short Name Field
Invisible : Yes
Set as : if NOT $$IsEmpty : SSSTable : MySelectAuto : +

SPeriodicity then $$Table:MySelectAuto : +
SPeriodicity else "Month"

Set always : Yes

Modifies : SVPeriodicity

3. The generated values are sent to the Parent Report by using the Form attribute ‘Output’.
[Form : MyAutoColumns]

No Confirm : Yes
Parts : My AutoColumns
Output : My AutoColumns

136

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

Step 3: Repeating Columns over a Variable and Lines over Objects of a Collection

To repeat columns over a Variable which are captured in an Auto Columns Report, the following
needs to be done at various components of the ‘MulCol Trial Balance’ Report

1. Report Definition: This involves repeating the Values of a System Variable which is cap- tured
in ‘MyMultiColumns’ Report.

[Report : MulCol Trial Balance]
Repeat : SVCurrentCompany, SVFromDate, SVToDate

2. Part Definition: This involves repeating Lines over the Objects of a Collection.

[Part: MulCol TB Details]

Lines : MulCol TB Details
BottomLines : MulCol TB Total
Repeat : MulCol TB Details : MulCol TB GroupLed

3. Line Definition: This involves repeating a Field.

[Line : MulCol TB Details]

Fields : MulCol TB Name Field, MulCol TB Amount Field
Repeat : MulCol TB Amount Field
Pz Print E: Expart 1z E-Mail O Upload L: Language S5: Support Certre | H: Help

AutoCol Trisl Balance ABC Co wy Lt ctrl + M B
ABC Company Ltd ABC Campany Lid ABC Company Lid
Particulars 1-Apr-2007 to 30-Jun-2007 1-Jul-2007 to 30-5ep-2007 1-0ct-2007 to 31-Dec-2007
Closing Balance Closing Balance Closing Balance
Diabit [Credit Diehit I Credit Diehit [Credit
5 mMore ..
45,00,000.00 55,00,000.00 54,00,000.00
Current Assets 2,54,46,664.95 2,80,59,229.83 2,84,31,555.33
Current Liabilities 55,13,819.50 74,10,593.12 47,51,275.11
Direct Expenses 8,310.00 8,310.00 8,310.00
Fixed Assets 26,21,191.88 40,46,191.88 40,67,691.88
Indirect Expenses 448,293 52 4,66,738.62 8,07,075.84
Investments 5,00,000.00 5,00,000.00
Loans (Liability) 2317277 46 222714365 26,18,979.54
Purchase Accounts 786375000 44.00,552.50 62,02,500.00
Sales Accounts 1,69,11,775.00 94,51,825.00 84,38,121.00
GRAND TOTAL 3,62,88,210.35 3,22,42,871.96| 3,84,71,022.83 2,4589,561.77| 4,00,17,133.05 2,13,08,375.95
A [+

Figure 9.13 Auto Column Report

137

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

Automatic Auto-Column Reports

There may be situations when the columns are required automatically without the intervention of
the user when the report is opened. The Attendance Sheet is an example of the Automatic
autocolumn Report in Tally.ERP 9.

Designing an Automatic Auto Column Report

In order to design an Automatic Auto Column Report, the function $$SetAutoColumns, and the
pre-defined variables DoSetAutocolumn and the DSPRepeatCollection are used.

The following points must be considered while creating the automatic auto-column reports:
o The value of the variable DoSetAutoColumn must be set to YES.
o The variable DSPRepeatCollection stores the Collection Name to be repeated.

o The function $$SetAutoColumns accepts the name of a variable which is repeated over the
value of variable ‘DSPRepeatCollection’.

o The columns are displayed based on the values in the collection provided by variable
‘DSPRepeatCollection’.

Example:

Consider the example of creating an auto-column for a Trial Balance. The same report can be
modified to have automatic Columns for Multiple selected companies. As mentioned earlier, the
following should be resorted to:

The variable DoSetAutoColumn must be set to Yes.
[Report : MulCol Trial Balance]

Set : DSPRepeatCollection : "List of Primary Companies"

The variable DSPRepeatCollection has to be set to “List of Primary Companies”

[Form : MulCol Trial Balance]
Option : Set Auto Option : $$SetAutoColumns:SVCurrentCompany

Add a dummy option in the ‘Form’ Definition such that the condition of the same is
$$SetAutoColumns:SVCurrentCompany. The variable SVCurrentCompany will be repeated
automatically as soon as you enter the report, provided multiple companies are loaded.

Also add the following lines to the Form Definition ‘MultiCol Trial Balance’

Option : Set Auto Option : $$SetAutoColumns : SVCurrentCompany
[!Form : Set Auto Option]

Multiple companies should be loaded for this program. Now, when the user selects the Menu
Item, the following screen is displayed:

138

Tty

POWER OF SIMPLICITY Reports, Printing and Validation
Trizl Balance Cirl + 0 [
ABC Company Ltd Global Enterprises
Particulars 1-Apr-2007 to 1-Aug-2008 For 1-Apr-2007
Closing Balance Closing Balance
Diehit [Credit Diehit [Credit
£6,00,000.00
Current Assets 3164717192 6,780.00
Current Liabilities 51,11,656.90 101.00
Direct Expenses 33,240.00
Fixed Assets 34,37 4849 68
Indirect Expenses 31,58 616.61 309.00
Investments 5,00,000.00
Loans (Liability) 27,27,116.02
Purchase Accounts 2,34,71 43750
Sales Accounts 4,756,492 B47.50 7.,300.00
GRAND TOTAL 6.22,47,955.71 6,09,31.620.43 7.200.00 7.300.00

L3 Cirl + H

Figure 9.14 Displaying Trial Balance for two different companies

Columnar Report

All the Voucher Reports which contain Accounting Information (Ledger and/or Group Info)
available in Vouchers, and can be displayed as Columns, are categorized as Columnar Reports.
For example, Sales Register, Purchase Register, Journal Register, Ledger, etc., where the
Voucher Registers can display multiple columns and respective values for each column, viz. the
ledger, the parent of the ledger, etc., entered in the voucher, as opted by the user.

& These types of Reports also use the Auto Column concept for achieving
oteS disparate columns.

Stock Registers and Sales Registers are a classic example of Columnar Reports.

2. Printing

We have already understood the various types of reports and the techniques to generate them.
An essential element of Reporting is printing. All the reports must be printable in one form or the
other.

Printing Techniques: The techniques used for Printing are as follows:

139

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

2.1 Menu Action — Print/Print Collection
Menu Action Print or Print Collection enters the final Report in ‘Print’ mode.
Syntax
[Menu : <Menu Name>]
Add : Key Item:[Position] : <Display Item> : <Unique Key>:
<ActionKeyword> : <Action Parameter>
;; where Action Keyword can be ‘Print’ or ‘Print Collection’ which triggers a list and displays the
5, final report based on user selection

Example:
[#Menu : Printing Menu]
Add : Key Item : My Ledgers : L : Print Collection : Ledger Vouchers

Add : Key Item : My Day Book : D : Print : Day Book

Here, we are adding the ltem ‘My Ledgers’, which has an action ‘Print Collection’ associated to it.

It displays a collection bearing the List of ledgers, which on user selection, enters the final report
in ‘Print’ Mode. On accepting, it directly goes to the printer.

2.2 Button Action — Print Report

Another method of printing reports is by way of associating a Button with an action ‘Print Report’
at the ‘Form’ definition. Action ‘Print Report’ prints the current report by default. This action
accepts Report Name as its parameter. If any report other than current needs to be printed, an
additional parameter containing Report Name needs to be specified. The current report can pass
the user selection to the printing report through a default collection called ‘Parameter Collection’.

Syntax
[Button : <Button Name>]

Action : <Print Report> [: Action Parameter]

Example:

Consider a report displaying a list of employees, wherein the user selects the required employees
for whom pay slips need to be printed. On clicking the ‘Print’ Button, the current report bearing the
list of employees is not required. A new report printed for various pay slips allotted to the selected
employees is needed.

[Button : Print Selected Pay slips]

;; Associate this button to the current report displaying the list of employees
Key : Alt + F1l1 Title : "Print Selected Pay slips"

;; Multiple Payslip Print Report will be printed on activation of this Button
., The Report should be altered to include the inbuilt Collection ‘Parameter
., Collection’ to print the user selection for the list of employees

Action : Print Report : Multi Pay Slip Print

140

Tty

POWER OF SIMPLICITY Reports, Printing and Validation
Scope : Selected Lines
[#Report : Multi Pay Slip Print]
Collection : Parameter Collection

Here, the Button ‘Print Selected Pay slips’ is defined with the Action ‘Print Report’, which also has
an action parameter, i.e., the Report Name to be printed. The scope of the Button is ‘Selected
Lines’, which means that the final Report ‘Multi Pay Slip Print’ must contain only the selected
Objects from the current Report. The user selection is passed to the new Report through a
Collection ‘Parameter Collection’, which must be used in the destination Report ‘Multi Pay Slip
Print’. So, the Report ‘Multi Pay Slip Print’ can be modified and added to the collection ‘Parameter
Collection’.

2.3 Page Breaks

A Page Break is the point at which one page ends and another begins. Handling Page Breaks is
important, as the current page should indicate continuation to the next page, while the next page
must indicate that the current page is continued from the previous page. So, there must be a
closing identifier, i.e., closing page break information and an opening identifier, i.e., opening page
break information.

In other words, Page Breaks specify the headers and footers for every page, and are printed
across multiple pages. Closing Page Break starts printing from the first page and prints on every
page except the last page, e.g., Continued... to be printed at the bottom of each page. Opening
Page Break starts printing from the second page till the last page. Closing Page Break is specified
before Opening Page Break, since in any circumstance, closing page break is encountered first.

In TDL, Page Breaks can be handled vertically as well as horizontally.
Types of Page Breaks
Vertical Page Breaks

In cases where a report containing data cannot be printed in a single page, one needs to use
vertical page breaks. Vertical Page Breaks can be specified at 2 levels, viz. Form and Part.

Form Level Page Break

Vertical Page Breaks can be specified at Form through the Form Attribute ‘Page Break'. It takes 2
parameters, viz. First Part for Closing Page Break and Second Part for Opening Page Break.

Syntax
[Form: <Form Name>]
Page Break : <Closing Part>, <Opening Part>
Example:

Consider a Trial Balance report of a company, which requires the title and address of the
Company in the first page and the grand total in the last page. In the pages between the first and
the last page, the text Continued.... may be required at the end of each page, and the Company
Name and Address at the beginning of each page.

[Form : My Trial Balance]

Page Break : Cl Page Break, Op Page Break

141

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

;; where both Cl Page Break and Op Page Break are Parts
[Part : Cl Page Break]

Lines : Cont Line
[Line : Cont Line]
Fields : Cont Field
Border : Full Thin Top
[Field : Cont Field]
Set As : “Continued..”
Full width : Yes
Align : Right
[Part : Op Page Break]
Parts : DSP OpCompanyName, DSP OpReportTitle
Vertical : Yes

In this example, Closing Page Break is defined to print Continued... at the end of every continued
page. Opening Page Break is defined to print the Company Name and Report Title at the
beginning of all the continuing pages. Since more than one part is used within Part definition,
specify the alignment as ‘Vertical', if required.

Part Level Page Breaks

Vertical Page Breaks can be specified at Part through the Part Attribute Page Break. This is
generally used when the Page Totals are to be printed for each closing and opening pages.

It takes 2 parameters, viz.1st Line for Closing Page Break and 2nd Line for Opening Page Break.

Syntax
[Part : <Part Name>]
Page Break : <Closing Line>, <Opening Line>
Example:

Consider a Trial Balance Report of a company, where we may require the running page totals to
be printed at the end and beginning of each page.

[Part : My Trial Balance]
Page Break : Cl Page Break, Op Page Break

;- where both Cl Page Break and Op Page Break are Lines
[Line : Cl Page Break]

Use : Detail Line

142

Tty

POWER OF SIMPLICITY Reports, Printing and Validation
Local : Field : Particulars Fld : Set As: “Carried Forward”
Local : Field : DrAmt Fld: Set As : STotal:DrAmtFld
Local : Field : CrAmt Fld: Set As : SSTotal:CrAmtFld
Local : Field : NetAmt Fld: Set As : $STotal:NetAmtFld

Border : Full Thin Top
[Line : Op Page Break]
Use : Cl Page Break
Local : Field : Particulars Fld : Set As : “Brought Forward”

Here, Line ‘Cl Page Break’ is defined to use the pre-defined ‘Detail Line’ and the relevant fields
are modified locally to set the respective values. Similarly, the Line ‘Op Page Break’ is defined to
use the above defined line ‘Cl Page Break’, which locally modifies only the field ‘Particulars Fid’.

Horizontal Page Breaks
Horizontal Page Breaks are used if the number of columns run into multiple pages.
Line Level Page Breaks

Horizontal page breaks can be specified at Line through Line Attribute ‘Page Break'. It is generally
used to repeat a closing column at every closing page and opening column at every opening
page. It takes 2 parameters, viz. 1st Field for Closing Page Break & 2nd for Opening Page Break.

Syntax
[Line : <Line Name>]
Page Break : <Closing Field>, <Opening Field>
Example:

Consider a Columnar Sales Register Report of a company, where multiple columns are printed
across pages. Some fixed columns are required in subsequent pages which makes it easy to map
the columns in subsequent pages.

[#Line : DSP ColVchDetail]
Page Break : Cl Page Break, Op Page Break

;; where both Cl Page Break and Op Page Break are Fields
[Field : Cl Page Break]

[Field : Op Page Break]

Fields :DBC Fixed, VCH No

143

POWER OF SIMPLICITY

Reports, Printing and Validation

In this example, the Field Cl Page Break is defined as Empty, since no Closing Column or Field is
required and Field Op Page Break is defined with further fields DBC Fixed and VCH No, which
are available in default TDL.

Form Level Page Break

Part Level Page Break

Line Level Page Break

It is a Vertical Page Break It is a Vertical Page Break It is a Horizontal Page
Break
Page Break attribute accepts | Page Break attribute | Page Break attribute

Part Names as its value

accepts Line Names as its
value

accepts Field Names as
its value

Multiple Parts (parts within
parts) can be printed both at
closing and opening page
breaks

Multiple lines (lines within
lines) can be printed at both
closing and opening page
breaks

Multiple Fields (Fields
within Fields) can be
printed at both closing
and opening page breaks

Form Level Page Breaks
cannot handle running Page
Totals

Running Page Totals can be
handled with Part Level
Page Break

Column Page Totals can be
handled with Line Level
Page Break

Table 9.1 Comparison between different page breaks

2.4 Frequently Used Attributes and Functions
Attributes
Line Level Attribute — Next Page

The ‘Next Page’ attribute specifies the cut off line that gets printed in the subsequent page. It
accepts a logical formula as its parameter.

Syntax
[Line : <Line Name>]
Next Page : <Logical Formula>
Example:
[Line : DSP Vch Explosion]
Next Page : (($SLineNumber = SLastLineNumber) AND SIsLastOfSet)

Attribute — Preprinted/PrePrinted Border

The Attribute ‘Preprinted’ or ‘Preprinted Border’ can be specified at Part, Line and Field
Definitions. These attributes work in conjunction with ‘preprinted/ plain’ button in the Print
Configuration screen. When the Preprinted attribute is set to YES, the contents of the current Part,
Line or Field will be left blank assuming the same to be pre-printed. When the ‘Preprinted Border’
attribute is set to YES, the borders used in the current Part, Line or Field will be assumed to be
pre-printed.
Syntax
[Line : <Line Name>]

Preprinted : <Logical Value>

144

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

Example:

[Line : Company Name]
Preprinted : Yes

Functions
Functions - $$PageNo and $$PartNo

The $$PageNo function returns the current Page Number while the $$PartNo function returns the
current Part Number of the page.

These functions do not require any parameter and the return type for $$PageNo is Number and
$$PartNo is String.

Syntax
$$PageNo
$$SPartNo
Example:
[Field : My PageNo]

Set as : “Page ” + $$String:$$PageNo+ “ (N + $$PartNo + “)”

Function - $$IsLastOfSet

It is used to check if the current Form is the last Form being printed. It doesn’t require any
parameter. It returns TRUE, if the current Form is the last Form being printed, else returns FALSE.

Syntax
$$IsLastOfSet
Example:

[Line : DSP Vch Explosion]
Next Page : (($$LineNumber = S$SLastLineNumber) AND $$IsLastOfSet)

Function - $$DoExplosionsfit

In the process of printing, if a line is exploded, then this function can be used to check whether the
exploded part fits within the current page. This function also doesn’t require any parameter and
returns its logical value. It returns its logical value as YES, if it is True.

Syntax
$$DoExplosionsFit
Example:

[Line : EXPSMP InvDetails]

NextPage : NOT SSDoExplosionsFit OR (($$LineNumber = SLastLineNumber)

145

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

$8Balancelines

It is used to check the balance number of lines in the repeated lines, including the exploded part
lines present, in a given part. Scroll : Vertical must be specified at ‘Part’ definition in order to use
this function. This function too does not require any parameter and returns a Numerical value.

Syntax

$$Balancelines
Example:

[Line : AccType Detail]
NextPage : ($$BalancelLine > 0) AND ((SSBalancelines < 5)

Here, if the Balance number of lines is between 0-5, remaining lines will be printed on next page.

3. Validation and Controls

Data validation and controls in Tally can be done at two levels, either at the Platform level or at the
TDL level. TDL Programmers do not have control over any of the Platform level validations. TDL
Programmers can only add validation and controls at the TDL Level. Let us understand some of
the TDL Level validation and control mechanisms.

3.1 Field Level Attribute - Validate

This attribute checks if the given condition is satisfied. Unless the given condition for ‘Validate’ is
satisfied, the user cannot move further, i.e., the cursor remains placed on the current field without
moving to the subsequent field. It does not display any error message.

Syntax
Validate : <Logical Formula>
Example:
[Field : CMP Name]

Use : Name Field

Validate : NOT $$IsEmpty : S$SValue
Storage : Name

Style : Large Bold

In this example:
o The field CMP Name is a field in Default TDL which is used to create/ alter a Company.

o Attribute ‘Validate’ stops the cursor from moving forward, unless some value is entered in the
current field.

o The function $$IsEmpty returns a logical value as TRUE, only if the parameter passed to it
contains NULL.

o The function $$Value returns the value entered in the current field.

146

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

Thus, the Attribute ‘Validate’, used in the current field, controls the user from leaving the field
blank, and forces a user input.

3.2 Field Level Attribute — Unique

This attribute takes a logical value. If it is set to Yes, then the values keyed in the field have to be
unique. If the entries are duplicated, an error message Duplicate Entry pops up. This attribute is
useful when a Line is repeated over UDF/Collection, in order to avoid a repetition of values.

Syntax
Unique : [Yes/No]
Example:
[!Field : VCHPHYSStockItem]

Table : Unique Stock Item : $$Line = 1

Table : Unique Stock Item, EndofList

Unique : Yes
In this code snippet, the field VCHPHYSStockltem is an optional field in DefTDL, which is used in
a Physical Stock Voucher. The attribute Unique avoids the repetition of Stock Item names.

3.3 Field Level Attribute — Notify

It is similar to attribute ‘Validate’. The only difference is that it flashes a warning message and the
cursor moves to the subsequent field. A system formula is added to display the warning message.

Syntax
Notify : <System Formula> : <Logical Condition>
Example:

[!Field : VCH NrmlBilledQty]
Set as : if @@HasInvSubAlloc then $$CollQtyTotal: +

BatchAllocations : $BilledQty else @ResetVal

Skip On : @@HasInvSubAlloc
Style : 1if @@IsInvVch then "Normal" else "Normal Bold"
Notify : NegativeStock : ##VCFGNegativeStock AND +

@@IsOutwardType ANDS$$SInCreateMode AND +
$$IsNegative : @@FinalStockTotal

Here, VCH NrmiBilledQty is a default optional field in TDL used in a Voucher. ‘Notify’ pops up a
warning message, if the entered quantity for a stock item is more than the available stock, and the
cursor moves to the subsequent field.

147

Tty

POWER OF SIMPLICITY

Reports, Printing and Validation

3.4 Field Level Attribute - Control

The attribute ‘Control’ is similar to Notify. The only difference is that it does not allow the user to
proceed further after displaying a message. The cursor does not move to the subsequent field.

Syntax

Control : <System Formula : Logical Condition>

Example:

[Field : VCH Number]

Use : Voucher Number Field

Inactive : @@NoVchNumbering

Skip On : @@AutoVchNumbering

Control : DuplicateNumber : @@NoDupVchNumbering AND +

(NOT $$InAlterMode OR NOT @SameVchTypeAndNum)AND +
$$IsDuplicateNumber : SValue : SameVchTypeAndNum
$VoucherTypeName = ##ORIGVchType AND +
$$vValue = ##ORIGVchNum
Validate : (@@NoDupVchNumbering AND NOT SSSIsEmpty:$$Value) +
OR NOT @@NoDupVchNumbering
Keys : PrevVchNumber

In this example, the field, VCH Number is a default field in TDL, used in a Voucher. The
duplication of voucher numbers for a particular voucher type is prevented by using the attribute
Control. The differences between the field attributes Validate, Notify and Control are:

Field Attributes Displays Cursor Movement
Message
Validate No Restricted
Notify Yes Not Restricted
Control Yes Restricted

Table 9. 2 Difference between the validation control attributes
3.5 Form Level Attribute - Control

This attribute achieves a higher level of control on the contents of a Form, compared to the other
controls used at the Lower levels of the Form. If the condition specified with ‘Control’ is not
satisfied, then the Form displays an error message while trying to save. The Form cannot be
saved until the condition in the attribute ‘Control’ is fulfilled.

148

Tty

POWER OF SIMPLICITY Reports, Printing and Validation

Syntax
Control : <String Formula : Logical Formula>

Example:

[Form : Voucher]

Control : DateBelowBooksFrom : $Date < +
$SBooksFrom:Company : ##SVCurrentCompany

Control : DateBelowFromDate : Shate < S$$SystemPeriodFrom

Control : DateBeyondToDate : $Date > $$SystemPeriodTo

In this example, Voucher is a default Form. While creating a voucher, the attribute Control does
not accept dates beyond the financial period or before beginning of the books.

3.6 Menu Level Attribute - Control

The attribute Control restricts the display of Menu Items, based on the given condition.
Syntax

Control : <Item Name> : <Logical condition>
Example:

[!Menu: Gateway of Tally]
Key Item : @@locAccountsInfo : A : Menu : Accounts Info. : NOT +
$SSIsEmpty:$S$SSelectedCmps
Control : @@locAccountsInfo : $$Allow:Create:AccountsMasters OR +
$$Allow:Alter:AccountsMasters

Here, the menu item Accounts Info will be displayed only if the condition is satisfied. $$Allow
checks if the current user has the rights to access the report displayed under the current Menu
item. The value AccountsMasters has been derived from attribute ‘Family’ at ‘Report’ definition.

3.7 Report Level Attribute - Family

The value specified with the attribute Family is automatically added to the security list as a
pop-up, while assigning the rights under Security Control Menu.

Syntax
[Report : <Report Name>] Family : <String Value>
Example:

[Report : Ledger]
Family : "Accounts Masters"

Here, Accounts Masters will get added to the Security list. Without the user rights for ‘Accounts
Masters’ in the Security controls, this report can neither be created, altered nor viewed.

149

Tty

Reports, Printing and Validation POWER OF SIMPLICITY

Learning Outcome

O O O o O O

[m]

Tally.ERP 9 caters to 3 different types of Reports. These are:

Tabular Reports: Reports with fixed number columns, which can be configured
Hierarchical Reports: Reports in successive levels or layers

Column based Reports: Reports with multiple columns

‘Explode’ is a Line attribute, which is used to take the current data from the Line Object.

$$KeyExplode function gives the current status of the keys Shift and Enter. This is used as
a condition to check if the user has pressed the Shift+Enter Keys.

Multi column report is one where a column repeats, based on criteria specified by user.
Page Break is the point at which one page ends and another begins.
Data validation and controls in Tally can be done at 2 levels, viz. Platform and TDL levels.

150

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

Voucher and Invoice Customisation

Introduction

A voucher is a primary document that contains all the information regarding a transaction. To
begin with, it is necessary to understand the classification of vouchers and their structure.
Voucher and Invoice Customisation will be dealt with later in this Topic.

1. Classification of Vouchers

For every transaction in Tally, you can make use of an appropriate voucher to enter all the
required details. Vouchers are broadly classified into three types:

o Accounting Vouchers
o Inventory Vouchers
o Accounting-cum-Inventory Vouchers

1.1 Accounting Vouchers

Accounting Vouchers imply recording transactions which require only the accounting details that
do not have any impact on the inventory. Receipt, Payment, Contra and Journal Vouchers are all
Accounting Vouchers.

i

(lotes. These transactions affect only the Accounting Reports.
0

In cases where the option Inventory Values are affected? (which is used for Journal/Payment/
Receipt entries) is set to Yes in the Ledger Master, the entries made will also accept the stock
items. However, this is not a standard business practice. Entries of this sort, are usually reflected
in the Inventory Reports.

151

Tty

Voucher and Invoice Customisation POWER OF SIMPLICITY

1.2 Inventory Vouchers

Inventory Vouchers imply the recording of transactions which require details pertaining only to the
inventory and do not have any impact on accounts. Stock Journal and Physical Stock Vouchers

are both Inventory Vouchers.

These transactions do not affect the Accounting Reports, except when the
i 4 Closing Stock value is computed and the option of ‘Integrate Accounts and
NoteS Inventory’ is set to YES in F11:Accounting/Inventory Features.

1.3 Accounting-cum-Inventory Vouchers

Accounting-cum-Inventory Vouchers are transactions containing details pertaining to Accounts as
well as Inventory. Purchase Order, Receipt Note, Rejection In, Debit Note, Purchase, Sales Order,
Delivery Note, Rejection Out, Credit Note, Sales, etc. are all Accounting-cum-Inventory Vouchers.

& Purchase Orders, Receipt Notes, Rejection Ins, Sales Orders, Delivery Notes

oteS and Rejection Outs only affect the Inventory Reports whereas Debit Notes, Purchase

Notes, Credit Notes and Sales affect the Accounting as well as Inventory

Reports, if the Tracking Number is set to ‘Not Applicable’, else it affects only the
Accounting Reports.

2. The Structure of a Voucher Object
A Voucher Object stores two types of information: Base Information and Actual Entries.

Base Information consists of base methods like Voucher Number, Date, Reference, Narration
and so on, which are common to all the voucher types.

Actual Entries are the entries pertaining to Accounts and Inventory.

The following six collections have been introduced to handle transactions based on the three
types of vouchers explained earlier. They are:

Ledger Entries
Inventory Entries
All Ledger Entries
All Inventory Entries
Inventory Entries In

O o o o o o

Inventory Entries Out

152

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

The hierarchy of Voucher Objects is as shown below:

Voucher |
| (Level 1)

Inventory Entries | Ledger Entries
(Level 2) | (Level 2)

v

User Description | Batch Allocations | Bill Allocations | Cost Category
(Level 3) | (Level 3) | (Level 3) | Allocations (Level 3)

Cost Centre
| Allocations (Level 4)

Figure 10.1 Hierarchy of Voucher objects

The base entries of a Voucher are Date, Voucher Type, Voucher Number, etc.

The first level consists of two basic collections, namely Ledger Entries and Inventory Entries.
Each Ledger Entry Object has its own Base Methods like Ledger Name, Amount, Bill Allocation
Collection and Cost Category Allocation Collection. Each Cost Category Allocation Object in turn,
contains its own Methods, which are Name, Amount and a Cost Centre Allocation Collection.

Accounting Vouchers use collections of the following type:
o Ledger Entries
o All Ledger Entries
Inventory Vouchers use collections of the following type:
o Inventory Entries
o All Inventory Entries
o Inventory Entries In
o Inventory Entries Out
Accounting-cum-Inventory Vouchers use collections of the following type:
Ledger Entries
All Ledger Entries
Inventory Entries
All Inventory Entries

o o o o

153

Tty

Voucher and Invoice Customisation POWER OF SIMPLICITY

3. Customisation

A user usually enters transactions in a voucher and prints it in the default format provided.
However, there may be instances, when the user would want to have it printed in a format other
than the default one provided in Tally. In such circumstances, the user may have to get it
customised according to the company needs.

In cases where there is a requirement for customisation, adhere to the following steps:

1. Analyse the format required by the company to judge whether
m The requirement can be met with the default format with some minor changes.

OR

= A new format needs to be designed

2. Check whether any additional input fields are required. If required, add the appropriate UDFs
at relevant places.

3. Identify the definitions that need to be altered to suit the user requirements.

e 4
In this chapter, we would be referring input screens as Vouchers and print screens
fotes as Invoice

3.1 Voucher Customisation

Let’s consider the following examples to understand the concept of Voucher Customisation.
Case 1

Problem Statement

A Company named ‘ABC Company Ltd’ needs the Cheque No., Date and Bank Name printed on a
Payment/Receipt Voucher and Receipt. There should also be an option of whether the Cheque
details are to be printed or not.

Solution
Step 1: Add additional fields to capture the Bank Name, Cheque Number and Cheque Date
For this, the following UDFs are created.

[System : UDF]
BankName : String : 1000
NarrWOCh : String : 1001
ChequeNumber : Number : 1000
ChgDate : Date : 1000

The UDFs mentioned above are used in the existing Part VCH Narration.

[#Part : VCH Narration]

154

Tty

POWER OF SIMPLICITY

Voucher and Invoice Customisation

;;Modify the Narration Part to add the details

Add Option BankDet VCH Narration

Add Option BankDet VCH NarrationRcpt

@@IsPayment OR @@IsReceipt

@Q@ReceiptAfterSave

On entering the required details, the screen of the Receipt Voucher looks as follows:

ABC Company Ltd

31-Mar-2008
Cost CentrerCiasses I Mot Applicable Monday
Accounl - HDFC Bank
Cew Bar © 1,39,229.82 Cr
Particulars Amount
Modern Advertisers 7,303.40
Car Bar ;000 Cr
Anst Ref 111 T1,303.40 Cr Dutpal ST- A, Sequices
Mame on Receipt : Modern Advertisers
Cheque Number 11384 Dated . ¥1-Mar-2008
Wide Bank Canara Bank
Rermark Full Amount is being received
Marration : 7,303.40

Figure 10.2 Alteration screen of a Receipt Voucher

Step 2

The Configuration screen of Receipt and Payment Voucher is altered to add a new option.
In this, the existing Parts Payment Print Config and Receipt Print Config have been altered.

. Payment Config Changes

[#Part Payment Print Config]

Add Lines Before PPRVchNarr PPR ChgDetails
., Receipt Config Changes
[#Part Receipt Print Config]

Add Lines After PPRWithCost PPR ChgDetails
Step 3

The existing Field PPR Narr and Part PPRBottomDetails are altered to get the required

Receipt/Payment Voucher.

155

Tty

Voucher and Invoice Customisation POWER OF SIMPLICITY

[#Field : PPR Narr]
Option : PPR Narr Rct Pymt
[#Part : PPRBottomDetails]
Option : PPRBottomDetails Rct Pymt : (QQ@IsPayment OR @@IsReceipt) AND

##PPRChgInfo

The print out of a Customised Receipt Voucher is as follows:

ABC Company Ltd
5, Oth Cross
Margosa Road
Malleswaram

Receipt Voucher

Mo, 211 Dated : 31Mar-2008
Particulars Amount
Account :
Modern Advertizers 7,303.40
Agsl Ref 111 7,303.40 Cr Ol 5T - At Senvices

Cheque Number and Date :

11384 dt 31-Mar-2008
Through :

HOFC Bank
On Account of

Full Arnount is being received
Amount {in words) :

Rs. Seven Thousand Three Hundred Three and Forty
paise Only
7.303.40

Authorised Signatory

Figure 10.3 Print preview of a customised Receipt Voucher

156

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

Step 4
The existing Field PRCT Thru is altered to get the required Receipt/Payment Voucher.
[#Field : PRCT Thru]

Option : PRCT Thru Rct Pymt : @@IsReceipt
The print out of a Customised Receipt is as shown:
MNo.: 211 Dated 3 -Mar-2008
ABC Company Ltd
5, S9th Cross

hargosa Road
Malleswaram

RECEIPT

Recd wih thanks fom - Medem Advertisers

The sum of . Rs. Seven Thousand Three Hundred Three and
Forty paise Only

By > Cheque Humber 11384 dated 31-Mar2008 drawn on Yes Bank
Remarks > Full Amount is being received
Rs. 7,303.40 Autharised Signatory

Figure 10.4 Print Preview of a customised Receipt Voucher
Case 2
Problem Statement

Consider adding columns for Marks and Number of Packages to Sales Voucher, instead of lines
which are already available by default in Tally.

Solution
To add a column in the Invoice screen, you should know:
o The position in which you have to add a field

157

Tty

Voucher and Invoice Customisation POWER OF SIMPLICITY

o The number of lines to be altered to incorporate the new field
o The type of UDF required for the field (if required)

The steps to be followed are listed below:
o Firstly, identify the lines that have to be altered to add the required fields.

o Check the field name in the column title and the details of lines in the inventory entries
made. Similarly, check the ledger entries collection including batch allocations, total and
subtotal lines. Check all the lines that may be effected in the invoice portion.

o Add the field in all the lines found.
The following lines are to be altered to achieve the required modification:

;; Invoice Column Headings1 without class

[Line : EI ColumnOne]

;; Invoice Column Headings2 with class

[Line : EI ColumnTwo]

;. Invoice Inventory Entries without Class
[Line : EI InvInfo]

,; alternate quantity details line
[Line : STKVCH AltUnits]

;7 Invoice Inventory Entries with Class
[Line : CI InvInfo]

;; are added at the form level

[Form : Export Invoice]

158

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

The following screen shows two input fields added or relocated in the Inventory Entries details:

ABC Company Ltd.

Accounting Voucher Alteration

No. 117 5-Mar-2008
Ref.: Cost Gentre/Classes - 1 Not Applicable Wednesday
Party's A/c Name : Fuzitsy Systems Price Level - ! Not Applicable

Current Balance - 14,949.80 Dr
Sales Ledger : Sales - Exports
VAT/Tax Class: Exports

Name of Item Marks | No. of Packages| Quantity Rate per Disc.% Amount
Wireless Keyboard 5463 18 5Nos $75.00 Nos $ 375.00

Show Statutory Details 7 No
Marration: 5463 18 5 Mos 5 375.00 @ Rs. 43.28/3 = Rs. 16,230.00

Being Computer Accessories sold to Russia.

Q: Quit |é: Accept |g: Delete |§: Cancel | | | | |

Figure 10.5 Voucher Alteration screen with new fields

Refer to the sample code for the same.

Case 3
Problem Statement

Consider adding a Subform for a stock item to enter the Height and Width. The dimension is
calculated on basis of the Height and Width entered, and the same is reflected in the Quantity field.

Solution

To add a Subform, one should know:
o The field at which a Subform needs to be called, with or without any condition.
o How to define a Subform Report and its components.

o Whether the Subform would effect the main screen from which it was called, with any
modifications.

Care should be taken to consider all situations, while addressing similar requirements, such as
with or without activation of Actual and Billed Quantity, with or without Batch wise screen, etc.

159

Tty

Voucher and Invoice Customisation POWER OF SIMPLICITY

The following lines are to be altered to achieve the required modification:

[#Field : VCHACC StockItem]
Add : SubForm : At Beginning : StkVCH Dimension : NOT SSIsEnd

SStockItemName

Stk CH Di mension ABC Company Ltd cirl + 1 [

Height Width | Dimension
10 100

Figure 10.6 Sub Forms

Refer to the sample code for the same.
Case 4
Problem Statement
Altering an existing Discount column that would change the default working of Tally.
Solution
To achieve this, first change the default Discount column from Percentage to Amount.
The changes that should be done in the default Tally screen are:
o Reformat Discount at Price level

[#Field : MPSDiscountTitle]

Set as : "Discount Amt"

160

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

o Reformat Discount at Inventory Entries not to show the Percent sign
[#Field : VCH Discount]

Delete : Format
Add : Format: "NoPercent,NoZero"

o Reformat Discount at Batch Allocations not to show the Percent sign
[#Field : VCHBATCH Discount]

Delete : Format
Add : Format : "NoPercent,NoZero"

o Change the valuation accordingly in VCH Value
;; To change the Invoice Value field when there are no Batch Allocations
[#Field : VCH Value]

ResetVal : if (Q@NoBaseUnits OR $$IsEmpty:S$BilledQty) then $$Value +
else ((SRate * S$BilledQty) - $Discount)

o Change the formula by which the discount is calculated
., Recalculate the following Formula rest will be taken care by Tally

[System : Formula]
CalcedAmt : (SRate * $BilledQty) - $BatchDiscount

NrmlAmount : ($BilledQty * S$Rate) - $BatchDiscount

161

Voucher and Invoice Customisation

Tty

POWER OF SIMPLICITY

Itarn Allocations for . Assembled PV
Godoven Guantity RBate per Dis bmt Amount
Tracking No. - 12142 Order Mo, - 5 Due op 12-Aug- 2008
Azzemhly Floor 20Hos 2200000 Ros f40,000.00
Tracking No. - [End of List Order Mo, -
20 Nos 4.40,000.00

Figure 10.7 Stock Item Allocation Screen

3.2 Invoice Customisation

Invoice Customisation can broadly be classified into two categories based on the requirement:

o Invoice Customisation — User defined format
Invoice Customisation — Modifications to default format

Invoice Customisation — User Defined Format

u]

A totally new Invoice format needs to be developed in this category, after which it can be enabled

in the following two different ways:

o Adding new format along with the default format

o Replacing the existing format with a new one

162

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

Adding a new format along with the default format

To create a new format of invoice by modifying the existing Form Sales Color in addition to the
default ‘Print’ Report code. This manner of Customisation begins with the following code snippet:

[#Form : Sales Color]

Add : Print: Sales Invoice
[Report : Sales Invoice]
Form : Sales Invoice

Object : Voucher

In this code snippet, the default ‘Print’ Report is deleted, the Report Sales Invoice is added and
the Object Voucher is associated to it. However, in the previous example, it was not necessary to
associate the ‘Voucher’ Object, since it was already associated in the default Report ‘Printed
Invoice’.

Case 1
Problem Statement

ABC Company Ltd. requires a Sales Invoice which in turn requires the following format in addition
to the default Sales Invoice.

163

Voucher and Invoice Customisation

Tty

POWER OF SIMPLICITY

INVOICE
Billing Name & Address Shipping Address I Mo 12
Universal Systems Ire Ot : 1-Aug-2008
Temns of Delivery :
Due Dt : 30-0ct-2008
Shipped Dt :
Ship Yia
Sl No. |ltem Name Cuantity Rate Amount
1 Assembled PIV 20 Nos|220000080s| 4,40,000.00
Sub Total| 4,40,000.00
Transportation & Packaging 2.500.00
CST Tax @ 4% 17 500.00
Net Amount| 4,60,100.00
Address Phone 098234723
5, Sth Cross Fax :
Margosa Road Ermail . contact@abc.com
Malleswaram for ABC Company Ltd

Figure 10.8 Invoice Customisation - Comprehensive

Replacing the existing format with a new one

By default, the basic formats provided for Commercial Invoice Printing are:

o

Normal Invoice, i.e., Comprehensive Invoice

164

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

o Simple Invoice, i.e., Simple Printed Invoice

The Comprehensive Invoice and Simple Printed Invoice are two optional forms which are
executed on the basis of satisfying a given condition. The default option available for print is the
Comprehensive Invoice.

A Simple Invoice is printed if the option Print in Simple Format is set to Yes in F12 :
Configuration. On the other hand, a Comprenhensive Invoice is printed only if the user opts for
a ‘Neat’ Format mode of printing, and the option mentioned above is set to No.

Case 1
Problem Statement

165

Tty

Voucher and Invoice Customisation POWER OF SIMPLICITY

ABC Company Ltd. requires a Sales Invoice which in turn requires the following format for both a
Normal Invoice as well as a Simple Invoice.

ABC Company Ltd
Youcher Date © 182008 “oucher No: 2
Party Mame : Universal Systems

Sr Name Billed Oty Rate Amount
No

1 Assembled PIV 20| 22,000.00 440000.00

Transportation & Packaging 2500.00

CSTTax @ 4% 4% 17600.00

Totals 20 460100.00

Amaunt inwards © Rs. Four Lakh Sy Thousand One Hundred Only
For ABC Company Ltd

Autherised Signatory

Figure 10.9 Invoice Customisation - Simple

Solution
Step 1

166

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

Default Forms for a Comprehensive Invoice and Simple Printed Invoice are modified with an
optional Form.

[#Form : Comprehensive Invoice]

Add : Option : My Invoice : @@IsSales
[#Form : Simple Printed Invoice]

Add : Option : My Invoice : @@IsSales

Step 2

The Parts and Page Breaks of the default Form are deleted and new Parts are added.

To begin with, the Invoice is classified into three parts: Top Part, Body Part and Bottom Part
These Parts can be further divided into any number of Parts according to the user’s requirement.

[!Form : My Invoice]

Delete : Parts

Delete : Bottom Parts
Delete : PageBreak
Space Top : 0

Space Bottom : O

Space Left : 0

Space Right : O

Add : Part : My Invoice Top Part

Add : Part : My Invoice Body Part

Add : Bottom Part : My Invoice Bottom Part

Invoice Customisation — Modifications to default format

There may be a requirement in an Invoice customisation which is similar to the default Tally format
with some minor changes. In such cases, one can just alter the default definitions as required.

Case 1
Problem Statement
A Company ABC Company Ltid. requires an Invoice with its Terms and Conditions as shown:

167

Voucher and Invoice Customisation

Tty

POWER OF SIMPLICITY

Solution
Step 1

Tax Invoice

ABC Company Ltd Imvaice Ma. Dated
5, 9th Cross 2 1-Aug-2008
Margosa Road Delivery Mote ModeTerms of Payment
Malleswaram 90 Days
E-mail : contacti@abc.com Suppliet's Ref, Other Reference(s)
Buyer Buyer's Order Ma. Dated
Universal Systems

Despatch Document Ma. Dated

Despatched through DOestinalion

WesselFlight Ha.

Place of Receipt by Shipper

City/Port of Losding

CityPort of Discharge

Terma of Delivery

S1| Marks & Mosi| Mo, & Kind Description of Goods Quantity Rate per |Dist. % Amount
hh.| Container Mo| of Pkas.
1 Assembled PIV 20 Nos| 22,000.00(Mos 4,40,000.00
Transportation & Packaging 2,500.00
CST Tax @ 4% 4(% 17,600.00
Total| 20 Nos 4.60,100.00
Amaount Chargeahle (n words) E&OE

Rs. Four Lakh Sixty Thousand One Hundred Only

Terms & Conditions :

1. Training : 9 hours

2. Tally Suppoart : 3 months without any additional charges

Campany's YAT TIN 1 23424872389
Company's CST Mo, 1234234234
Company's Sewice Tax Mo, © 234234
Company's PAN . EENMM16789

Declaraiion

We declare that this invoice shows the actual price of the
goods described and that all particulars are true and carrect.

for ABC Company Ltd

Authorized Signatary

This iz a Computer Generated Invoice

Figure 10.10 Invoice Customisation

168

Tty

POWER OF SIMPLICITY Voucher and Invoice Customisation

The default configuration Part IPCFG Right is altered to add the Line.
[#Part : IPCFG Right]

Add : Lines : GlobalWithTerms

Step 2
The default Part EXPINV ExciseDetails is altered to cater to the requirement.

[#Part : EXPINV ExciseDetails]
Delete : Lines : EXPINV ExciseRange, EXPINV ExciseRangeAddr, +
EXPINV ExciseDiv, EXPINV ExciseDivAddr, +
EXPINV ExciseSerial, EXPINV InvoiceTime, +

EXPINV RemovalTime

Add : Lines : EXPINV SubTitle, EXPINV ExciseDetails

Repeat : EXPINV ExciseDetails : Global Terms

Local : Field : EXPINV SubTitle : Info : "Terms & Conditions :"
Local : Field : EXPINV SubTitle : Border : Thin Bottom

Local : Line : EXPINV SubTitle : Space Bottom : 1

Invisible : NOT @@IsInvoice OR NOT ##ShowWithTerms

Case 2

Problem Statement

Sorting Inventory Entries as per user requirement.
Solution

The Inventory Entries of an invoice are printed in the order in which they are entered. This order
can be changed as per user requirement. The sorting can be done in either ascending or
descending order in terms of the item name, stock group, stock category, units of measure, rate,
value, and so on. To denote the descending order, attach ‘—’ sign to it.

To change the order of the default invoice:
o Define a Collection of inventory entries in the desired sorted order

[Collection : Sorted Inventory Entries]
Type : Inventory Entries : Voucher
Sort : Default : -S$Parent : StockItem:S$StockItemName, S$StockItemName

o Note the Part in which the statement ‘repeat Line of Inventory entries’ is mentioned in the
DefTDL and Change this Part to ‘repeat the Line with the new Collection defined’.

[#Part : EXPINV InvInfo]

169

Tty

Voucher and Invoice Customisation POWER OF SIMPLICITY

Repeat : EXPINV InvDetails : Sorted Inventory Entries
;; End-of-Code
Learning Outcome
o Vouchers are broadly classified into three types:
= Accounting Vouchers
= Inventory Vouchers
= Accounting-cum-Inventory Vouchers
o Voucher Objects store two types of information - Base Information and Actual Entries.

170

Section II

TDL Language Enhancements

Tty

POWER OF SIMPLICITY

Writing Remote Compliant TDL Reports

Introduction

Enabling access to your organisational data ‘anytime, anywhere’, and yet being truly usable, is
what Tally.ERP 9 is capable of. With remote access, it will be possible for the owner or any
authorized user to access Tally.ERP 9 data from anywhere. With this capability, they will be able to
access all the reports and information from a remote location.

All this has been made possible by adopting Client/Server architecture in the product. The
underlying principle of any client/server environment is the communication between client and
server in a request/response fashion.The request/response is in the form of XML. Client sends
request and the server responds.

Tally.ERP 9 family, the default product delivers the capability to access any TDL reports from
anywhere. There have been significant enhancements in Tally platform at the Collection, Report
and Function Levels for delivering this capability. The way TDL Reports have been changed in
default TDL to optimise the performance and seamlessly work without clogging the network is
the focus of this chapter. The idea is to reduce the server calls for accessing the data.The
same concepts can be followed for making the customized Reports Remote Compliant.

Given below is the overall enabled environment using Tally.NET Server.

Remote Auditor
with Tally.NET Environment
Education / Auditors’ | [—
Edition of Tally.ERP 9 . =

Local User

Remote Access @

Remote User
with |.
Education / Licensed
Version of Tally.ERF 3

PC with Tally.ERP 9

Figure 12.1 Overview of Tally.NET Server

We will begin our discussion with an overview of client/server environment in general, and then
move on to Tally Client/Server, and the role of Tally.NET Server in such a scenario. The topics
covered henceforth will focus on understanding the execution of TDL reports and optimising the
code for executing in this environment.

175

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

1. Client/Server Architecture — An Overview

Clients and Servers are separate logical entities that work together over a network to accomplish a
task. A client is defined as a requester of services and a server is defined as the provider of
services.

r ™

45 i' Request
Client 1 Response j

S Server

Client 2

Figure 12.2 Block diagram of client/server architecture

Some of the advantages of client/server architecture are as follows:
o Centralization - Resources and data security are controlled through the server.
o Scalability — Entire system can be scaled horizontally or vertically.
o Accessibility - Server can be accessed remotely.

2. Tally Client/Server Architecture using Tally Software Services

TSS (Tally Software Services) is a framework which provides a number of services to the
Tally.ERP 9 users. The TSS architecture is derived from client/server architecture. In this
architecture, Tally.ERP 9 Client is connected to Tally.ERP 9 server via middle-ware, i.e., TallyNET
Server. Following are the major components of the TSS architecture.

o TallyNET Server
o TallyERP 9 Server
o Tally.ERP 9 Client

2.1 Tally.NET Server

The communication between Tally.ERP 9 Server and Tally.ERP 9 client is being handled by
TallyNET Server. It provides the Routing services for Tally. It is through TallyNET Server that we
are able to provide an entire range of services, which we commonly refer to as TSS features.
The user can utilize Tally.NET Server to Synchronize data, access online help and support and

176

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

manage licenses across locations, while the auditor can use it to scrutinise the client’s data from a
remote location. All this can be done in a secured environment.

The system administrator can create users with the rights to access or audit data from a remote
location and assign controls based on their security level for the required company only. The
remote users accessing the company data behave as clients on TallyNET Server. Tally.NET Server
takes care of user authentication when a remote user tries to connect to the Tally.ERP 9 Server.

TSS Features

Register and Connect companies from Tally.ERP 9

Create and maintain Remote Users

Remote availability of Auditor’s License

Synchronize data

Remote access of data by any user

Use online help and support capability from within Tally or browser

O 0o o o o o o

Application Management (across Multi-serial, Multi-Location, etc.) via Tally or browser

ey

b & espa™®
Fa
g

nl'
=B

Tally.NET Server

-
»

Routing Services, Synchronization,
Remote User Authentication, Lisence Management ...

[

] Internet

Tally Clients Tally Servers

Figure 12.3 TallyNET Server Architecture

2.2 Tally.ERP 9 Server

TallyERP 9 Server is a typical Tally application which hosts the Tally Company and is always
connected to the TallyNET Server. User creation, authorization, connecting the company to
Tally.NET Server, etc., is handled at this end.

2.3 Tally.ERP 9 Client

Tally.ERP 9 Client is a typical Tally application. Tally client can remotely access the Tally Company
which is hosted by Tally server. Authenticated users connect to enabled companies from this end.

177

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

3. Setting up Tally.NET Server for Remote Access

Following are the steps which need to be executed to setup the Tally.NET Server:

Step 1: Enable Security control to avail TSS features.

Go to Gateway of Tally. Click F3 :Company Info > Alter

Step 2: Configuring TSS features.

Go to Gateway of Tally. Click F11:Features > TSS Features

Step 3: Authorizing the Remote Users.

Go to Gateway of Tally. Click F3 :Company Info > Security Control > Users & Passwords

o Users classified under the security level TallyNET User and TallyNET Auditor
e 4 should be created individually by the system administrator.

oteS o ‘Allow Remote Access’ should be set to YES only if the client wants his
Tally NET Auditor/Tally.NET User to access data remotely.

o If ‘Allow Local TDLs’ is set to YES, then the client can load Local TDLs, in
addition to remote TDLs. Ifit is set to NO, the client cannot load Local TDLSs.

Step 4: Connecting Companies to TallyNET Server
Go to Gateway of Tally. Click F4:Connect Company

178

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

4. Setting up the Client Tally

The users classified as TallyNET User or TallyNET Auditor can access data by logging in from a
remote location. The user has to execute the following steps to login as a remote user:

Step 1:
Get connected to Tally.NET Server

Gateway of Tall Ctrl + M E
Current Period Current Date

List of Selected Companies

Name of Company Date of Last Entry

Company Info.

Select Company
Login as Remote User
Create Company

Backup
Restore

Quit

Figure 12.4 Connect to Tally.NET Server
Step 2:
Provide the User name and Password

Login As Remote Tally.NET User

Your E-Mail 1D . auditor@abc.com

Your Tally. NET Password : [

(if you have forgotten your Tall NET Fassword, please press Fo:Reset Password.
A new password will be sent to your E-Mall address, and you can then login).

Figure 12.5 Providing User Name and Password

After entering of valid user name & password, Tally displays screen to select the remote company.

179

Writing Remote Compliant TDL Reports

Tty

POWER OF SIMPLICITY

Step 3: Load the Remote company

Company Name Account 10 Serial Number Contact Person Caontact Humber
Online Companies

ABC Company Ltd (@ solLtions com 70

ABC Exicse Company |l faly?talysolitions com 702055275

BiOhd faly?talysolitions com 702055275

Haryana faly?talysolitions com 702055275

Jonmy Connect falydtalysolitions com 702055200 Arun 3378

Mational Traders faly?talysolitions com 702055275

Mational Traders (TH RegulariPay faly?talysolitions com 702055275

Payroll faly?talysolitions com 702055275

Profit and Loss - Kumaran tally?@ialysaiutions. com 702088209 Kumaran

Service Tax - ERP faly?talysolitions com 702055275

Tally Audit Demo and Co Krishna faly?talysolitions com 702055275 Maohan

Tally ERP 9 Testing faly?talysolitions com 702055275 Tally wWorld

Tally Payroll 25th Feb faly?talysolitions com 702055275

Test Femote faly?talysolitions com 702055275 TR

Utkarsh Test Data faly?talysolitions com 702055275 Uitharsh 3275
Offline Companies

21022009 failyd (@iailysoiutions, com 7020882718 Hanga

AlRaju el (@iailsoiutions, com FO2088200 A Raju

AlLLA Excise Dealer MultiGodown el (@iailsoiutions, com FO2088200

ALBC Co., gopkrisnamiatysolitions. com 77 3050389 Foi krishng

Aand Co el (@iailsoiutions, com FO2088200 Haf

Abc el (@iailsoiutions, com FO2088200

ABC Company Ltd--- sutwaman piliatysoltions.com 7737 23634

ABC Company Ltd sutwaman piliatysoltions.com 7737 23634 A B Chand

82 more ...

Figure 12.6 Loading Remote Company

The above screen displays the list of companies to which the remote user has access. First, all
the Online companies are listed, followed by the list of offline companies.

5. TDL — In a Client/Server Environment

In a client/server environment, data resides in the server. A typical client will have only user
interface. Whenever the client requires data, it has to send a request to the server with
credentials, and the server will respond with the data.

In TSS environment, the server and the client exchange the request/response in encrypted XML
format. When the client is Tally application, it will have only the user interface and needs to get
data from the server on demand. A typical Tally application is developed using TDL. In TDL
language, definitions are broadly classified as Data Objects and Interface Obijects. Interface
objects define the user interface and Data objects store the values in Tally primary or secondary
database. Tally client will have only Interface Objects locally and the Data Objects need to be
fetched from the server on request.

It is the TDL Programmer’s responsibility to fetch the required data from the Tally server to Tally
Client.

180

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

6. TDL Enhancements for Remote

TDL language has been enhanced with the client/server capability. Collection and Report
definitions are enhanced to make server calls. Enhancements have taken place in the platform for
the execution of Functions and Actions.

6.1 Collection Enhancements

In TDL, ‘Collection’ definition is a data repository which contains the data objects. Whenever Tally
Client uses a Collection, it has to fetch the objects from the Remote server. But a Tally Client need
not require the all the methods of an Object. Also fetching the entire Object may be costly in terms
of network bandwidth.

The required methods of an object(s) at the Tally Client are fetched using the Collection attribute
‘Fetch’. In addition to ‘Fetch’ attribute, methods doing aggregation or computation using ‘Aggr
Compute’ & ‘Compute’ are also brought to the Tally Client.

Internally fetching a method will generate an XML fragment, which will be sent to the Tally Server
as a request.

1. Fetch
Syntax
Fetch : Existing-Method-Name-in-Source, ..

Where,

<Existing-Method-Name-in-Source> are the internal methods of the Object which needs to be
fetched to the Client.

2. Compute
Syntax

Compute : Method-Name : Method-Formula
Where,
<Method-Formula> is any computational method, and

<Method-Name> denotes the name of the method.

e Please refer ‘TDL Enhancements for Tally.ERP 9.pdf' for further information on Col-
otes lection attributes ‘Aggr Compute’, ‘Compute’ and ‘Fetch’

Example: Fetching Name & Closing Balance of Ledger Object
Step 1:- Fetching Name and Closing Balance methods of ‘Ledger’ object

[Collection : Ledgers]
Type : Ledger
Fetch : Name, Closing Balance, Parent

Compute : PClosingBalance : $ClosingBalance : Group : S$Parent

181

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

Format : $Name, 15

Step 2: Utilizing the fetched methods
a) As a Table
[Field : Sample Field]

Table : Ledgers
Show Table : Always

b) In ‘Repeat’ at Part Level

[Part : Sample Part]
Line : Sample Line
Repeat : Sample Line: Ledgers
[Line : Sample Line]
Fields : Sample Fl1dl, Sample F1d2, Sample F1d3
[Field : Sample F1dl]
Use : Name Field
Set as : $Name
[Field : Sample F1d2]
Use : Amount Field
Set as : $ClosingBalance
[Field : Sample F1d3]
Use : Amount Field
Set as : $PClosingBalance

Sample Request Format XML file to fetch the internal methods and Compute method:

<ENVELOPE>
<HEADER>
<VERSION>1</VERSION>
<TALLYREQUEST>EXPORT</TALLYREQUEST>
<TYPE>COLLECTION</TYPE>
<ID>Ledger</ID>

</HEADER>

182

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

<BODY>
<DESC>

<STATICVARIABLES>
<SVEXPORTFORMAT>BinaryXML</SVEXPORTFORMAT>
<SVCURRENTCOMPANYTYPE="String">DemoCompany</SVCURRENTCOMPANY>
<SVCURRENTDATE TYPE="Date">20-Dec-2008</SVCURRENTDATE>
<SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>
<SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>
<SVCURRENTKBLANGUAGEID TYPE="Number">1033

</SVCURRENTKBLANGUAGEID>

</STATICVARIABLES>
<TDL>
<TDLMESSAGE>
<COLLECTION NAME="Ledger" ISMODIFY="No" ISFIXED="No"

ISINITIALIZE="Yes" ISOPTION="No" ISINTERNAL="No">
<TYPE>Ledger</TYPE>

<METHOD>PClosingBalance:$ClosingBalance:Group: $Paren </METHOD>
<NATIVEMETHOD>Name</NATIVEMETHOD>
<NATIVEMETHOD>Parent</NATIVEMETHOD>
<NATIVEMETHOD>ClosingBalance</NATIVEMETHOD>
</COLLECTION>

</TDLMESSAGE>

</TDL>

</DESC>

</BODY>

<ENVELOPE>

183

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

6.2 Report Level Enhancements
Fetching the Object

When multiple methods of a single Object are required for a Report, then that Object can be
fetched at Report level. For this purpose, new Report attribute ‘Fetch Object’ has been
introduced. Internally fetching an object will generate an XML fragment which will be sent to the
Tally Server as a request.

Syntax

Fetch Object : <Object Type> : <Object Name>:<Method Namel +

[,<Method Name 2>..]

Where,
<Object Type> denotes the type of the Object.
<Object Name> denotes the name of the Object.
<Method Name 1> denotes the method to be fetched.
Example: Pre fetching Ledger Object with methods ‘Name’ & ‘Closing Balance’

[Report : Simple Report]
Fetch Object : Ledger : Ledger Name : Name, Parent,Closing Balance

In this code snippet, Ledger Name is the variable which stores the name of the Ledger Object
whose methods need to be fetched at the Report.

Sample Request Format XML file to fetch the object:
<ENVELOPE>

<HEADER>
<VERSION>1</VERSION>
<TALLYREQUEST>EXPORT</TALLYREQUEST>
<TYPE>OBJECT</TYPE>
<SUBTYPE>Ledger</SUBTYPE>
<ID TYPE="Name">Cash</ID>

</HEADER>

<BODY>
<DESC>

<STATICVARIABLES>
<SVCURRENTCOMPANY>Demo Company</SVCURRENTCOMPANY>

<SVEXPORTFORMAT>BinaryXML</SVEXPORTFORMAT>

184

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

<SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>
<SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>
<SVCURRENTDATE TYPE="Date">1-May-2008</SVCURRENTDATE>
<SVVALUATIONMETHOD TYPE="String"></SVVALUATIONMETHOD>
<SVBUDGET TYPE="String"> </SVBUDGET>
<SVCURRENTKBLANGUAGEIDTYPE="Number">1033
</SVCURRENTKBLANGUAGEID>
<SVCURRENTUILANGUAGEIDTYPE="Number">1033
</SVCURRENTUILANGUAGEID>
</STATICVARIABLES>
<FETCHLIST>
<FETCH>Name</FETCH>
<FETCH>Parent</FETCH>
<FETCH>Closing Balance</FETCH>
</FETCHLIST>
</DESC>
</BODY>
</ENVELOPE>

Pre Fetching the Object

There are some scenarios in which it is required to set the values of variables according to the
data fetched along with the object. At the report level, the ‘Set’ attribute for changing variable
value takes precedence and ‘Fetch Object’ is evaluated later. In those cases, fetching the object
first becomes mandatory. For this purpose, a new attribute ‘Pre Fetch Object’ has been
introduced, which will be evaluated before the ‘Set’ attribute.

Syntax
Pre Fetch Object : <Object Type> : <Object Name> : <Method Namel +
[,<Method Name 2>..]
Where,
<Object Type> denotes the type of the Object.
<Object Name> denotes the name of the object, and
<Method Name 1> denotes the method to be pre-fetched.

185

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

Example:

[Report : Simple Report]
Set : LedgerName : “Cash”
Pre Fetch Object : Ledger : LedgerName : LastVoucherDate
Set : SVFromDate : $LastVoucherDate : Ledger : ##LedgerName

In this code snippet, variables are set once, and then the PreFetchObject is done, and once again
the variables are set to make sure that the values of the variables which were dependent on the
object, will set now.

Pre fetching the Collection

When the same collection is used in the Report either for repeating the line over its objects or
multiple functions using the same, then a Collection of those objects can be pre fetched at the
Report level. A new Report attribute ‘Fetch Collection’ is introduced to pre fetch a Collection.

Syntax

Fetch Collection : <Collection 1> [,<Collection 2>..]
Where,
<Collection 1> is the collection whose objects need to be pre fetched at Report.
Example: Pre fetching Ledger collection

[Report : Sample Report]
Fetch Collection : Ledger
Local : Collection : Fetch : Ledger

In this code snippet, Ledger Collection is pre-fetched.
Sample Request Format XML file to fetch the object:

<ENVELOPE>

<HEADER>
<VERSION>1</VERSION>
<TALLYREQUEST>EXPORT</TALLYREQUEST>
<TYPE>COLLECTION</TYPE>
<ID>All Party</ID>

</HEADER>

<BODY>
<DESC>

<STATICVARIABLES>

186

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

<SVEXPORTFORMAT>BinaryXML</SVEXPORTFORMAT>
<SVUSEPARMLIST>No</SVUSEPARMLIST>
<SVFORTABLE>No</SVFORTABLE>
<SVCURRENTCOMPANY TYPE="String">Remote Vivek</SVCURRENTCOMPANY>
<SVCURRENTDATE TYPE="Date">2-May-2008</SVCURRENTDATE>
<SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>
<SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>
<SVVALUATIONMETHOD TYPE="String"></SVVALUATIONMETHOD>
<SVBUDGET TYPE="String"></SVBUDGET>
</STATICVARIABLES>
<TDL>
<TDLMESSAGE>
<COLLECTION NAME="All Party" ISMODIFY="No" ISFIXED="No"
ISINITIALIZE="Yes" ISOPTION="No" ISINTERNAL="No">
<TYPE>Ledger</TYPE>
<BELONGSTO>Yes</BELONGSTO>
<CHILDOF>SGroupSundryDebtors</CHILDOF>
<NATIVEMETHOD>OpeningBalance</NATIVEMETHOD>
<NATIVEMETHOD>ClosingBalance</NATIVEMETHOD>
</COLLECTION>
</TDLMESSAGE>
</TDL>
</DESC>
</BODY>

</ENVELOPE>

187

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

6.3 Function on Request

Functions in TDL are defined and provided by the platform. A TDL programmer can only call a
function. Now in client/server environment, functions can be evaluated by either the sever or the
client or both the client and the server.

Based on this information, functions can be classified as follows:

1. Evaluated at client side
2. Evaluated at server side
3. Hybrid

Evaluated at client side

These are the functions which will be evaluated at the client side. For this, no server request is
required from the client. If these functions require any parameter as data, then required data
needs to be fetched from the server before the function is called.

Example:

$$KeyExplode, $$ExplodeLevel, $$Line, etc., are the functions which do not require any
parameter from the Tally server and are executed at the Tally client.

Evaluated at server side

These are the functions which will be evaluated at the server side. For each call of a function, a
request will be sent to the server, along with the parameters.

Example:

$$NumStockitems, $$NumLedgers, etc., are the functions which will be executed at the server
side.

Sample Request Format XML file for Function Call:

<ENVELOPE>
<HEADER>
<VERSION>1</VERSION>
<TALLYREQUEST>EXPORT</TALLYREQUEST>
<TYPE>FUNCTION</TYPE>
<ID>$$NumLedgers</ID>
</HEADER>
<BODY>
<DESC>
<STATICVARIABLES>
<SVCURRENTCOMPANY>Demo Company</SVCURRENTCOMPANY >

<SVEXPORTFORMAT>BinaryXML</SVEXPORTFORMAT>

188

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

<SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>
<SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>
<SVCURRENTDATE TYPE="Date">1-May-2008</SVCURRENTDATE>
<SVCURRENTKBLANGUAGEID TYPE="Number">1033</SVCURRENTKBLANGUAGEID>
<SVCURRENTUILANGUAGEID TYPE="Number">1033</SVCURRENTUILANGUAGEID>
</STATICVARIABLES>
</DESC>
</BODY>
</ENVELOPE>

Hybrid

These are the functions which will be executed on either the client or the server side based on the
availability of the data.

Example:

$$IsSales, $$CollAmtTotal, $$FilterAmtTotal, etc., are the functions which will be executed at the
server or client side, based on the availability of data.

Server side execution

SSFilterAmtTotal : $OpeningBalance : Ledgers : MyFilter
Since Ledger Collection is available on the sever, the function $$FilterAmtTotal will be executed
at the Server end.
Client side execution

SSFilterAmtTotal : S$Amount : LedgerEntries : MyFilter
‘Ledger Entries’ collection is available inside the ‘Voucher’ Object. So, the required Voucher
Object needs to be fetched to the Client before the function is executed. Once the Voucher is

brought to the client, the function will be executed on the client side, since it is assumed to be
executed in the Voucher context.

6.4 Action Enhancements

The Action “Modify Object” is executed in the Display mode of any report. This action can be
executed at the client’s end to modify any object present on the Server Company. For details on
the usage of this action, please refer to “TDL Enhancements for TallyERP 9”.

Syntax
Action : Modify Object : <PrimaryObjectSpec>.<SubObjectPathSpec> +
.Method-Name : value>[,Method Name: <value> , ..] +
[,<SubObjectPathSpec>.MethodName:<value>,]

189

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

Where,

<PrimaryObjectSpec> can be (<Primary Object Type Keyword>, <Primary Object Identifier
Formula>).

<SubObjectPathSpec> is given as CollectionName [<Index Formula>, [<Condition>]]
<MethodName> refers to the name of the method in the specified path.

<Index Formula> should return a number which acts as a position specifier in the Collection of
Objects satisfying the given <condition>.

Sample Request Format XML file for Modifying ‘Ledger’ Object:
<ENVELOPE>

<HEADER>
<VERSION>1</VERSION>
<TALLYREQUEST>IMPORT</TALLYREQUEST>
<TYPE>DATA</TYPE>
<SUBTYPE>Ledger</SUBTYPE>
<ID>All Masters</ID>
</HEADER>
<BODY>
<DESC>
<STATICVARIABLES>
<SVCURRENTCOMPANY>Demo Company</SVCURRENTCOMPANY>
</STATICVARIABLES>
</DESC>
<TALLYMESSAGE>
<LEDGER NAME="Customer 1" RESERVEDNAME="">
<ADDRESS.LIST TYPE="String">
<ADDRESS>Abc</ADDRESS>
<ADDRESS>Def</ADDRESS>
</ADDRESS.LIST>
<MAILINGNAME.LIST TYPE="String">

<MAILINGNAME>Customer 1</MAILINGNAME>

190

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

</MAILINGNAME.LIST>
<ALTEREDON>20090112</ALTEREDON>
<NAME TYPE="String">Customer 1</NAME>
<CURRENCYNAME>Rs .</CURRENCYNAME>
<PINCODE>560001</PINCODE>
<PARENT>Sundry Creditors</PARENT>
<ISDEEMEDPOSITIVE TYPE="Logical">Yes</ISDEEMEDPOSITIVE>
<SORTPOSITION> 1000</SORTPOSITION>
<OPENINGBALANCE>1.00</OPENINGBALANCE>
<LANGUAGENAME .LIST>
<NAME.LIST TYPE="String">
<NAME>Customer 1</NAME>
<NAME>Alias</NAME>
</NAME.LIST>
<LANGUAGEID> 1033</LANGUAGEID>
</LANGUAGENAME .LIST>

</LEDGER>

</TALLYMESSAGE>

</BODY>

</ENVELOPE>

7. Writing Remote Compliant TDL Reports

TDL programmer can optimize the performance of the Remote compliant TDL by minimizing the
server request calls.

Mentioned below are the guidelines to optimize the Remote Compliant TDL Reports.
7.1 Fetching the single Object

When an entire Report requires multiple methods of a single Object, then the Object can be
pre-fetched with the required methods. In this approach, only one server call is made to fetch all
the required methods.

191

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

Example:

[Report : Final Led Report]
Form : Final Led Report
Fetch Object : Ledger : LedgerName : Name, Ledger Contact,+
Ledger Phone, TBalOpening, TBalClosing

7.2 Repeating Lines over a Collection

The following techniques are used to optimize the performance, when a line is repeated over a
collection in a report to be displayed on the client.

Fetching the Methods

Whenever a collection is referred to in a Report, the required methods need to be explicitly
fetched from the server. It is mandatory to specify ‘Fetch’ in the Collection for all the methods
which are used in the fields. If ‘Fetch’ is not used, then the data will not be displayed in the field.

[Part : LedReport]
Line : LedReportDetails
Repeat : LedReportDetails : Ledger
Scroll : Vertical
[Line : LedReportDetails]
Fields : Led Name
Right Field : LedClosingBalance
[Field : Led Name]
Use : Name Field
Set as : $Name
[Field : LedClosingBalance]
Use : Amount Forex Field
Set as : $ClosingBalance

[#Collection : Ledger]

Fetch : Name, Closing Balance

Function inside the ‘Repeat’

When Lines are repeated over a Collection and a function is used at the field level, then each
‘Repeat’ will trigger an additional server request for function call. In this scenario, the entire
function call logic can be moved to ‘Compute’ of the repeated Collection. The later approach will
do only one server request. Hence, performance is drastically improved.

192

Tty

POWER OF SIMPLICITY Writing Remote Compliant TDL Reports

[Part : LedReport]
Lines : LedReportDetails
Repeat : LedReportDetails : Ledger
Scroll : Vertical
[Line : LedReportDetails]
Fields : Led Name
Right Fields : LedClosingBalance, LedSalesTotal
[Field : Led Name]
Use : Name Field
Set as : $Names
[Field : LedClosingBalance]
Use : Amount Forex Field
Set as : $ClosingBalance
[Field : LedSalesTotal]
Use : Amount Forex Field
Set as : $LedgerSalesTotal
[#Collection : Ledger]
Fetch : Name, Closing Balance
Compute : LedgerSalesTotal : +
$SAsReqOb]j : SFilterAmtTotal : LedVouchers : MyParty : SAmount

Repeating over Period Collection

In Reports where lines are repeated over Period Collection and values of each column is
calculated over a period for the required object, e.g., in Sales Register, value of each column is
calculated based on a period and object Voucher Type.

In this scenario, an additional computational method needs to be added to the Period Collection to
fetch the values for each column.

[#Collection : Period Collection]
Compute : TBalDebits : $TBalDebits : VoucherType : #VoucherTypeName
Compute : TBalCredits : $TBalCredits : VoucherType : #VoucherTypeName

Compute : TBalClosing : $TBalClosing : VoucherType : #VoucherTypeName

193

Tty

Writing Remote Compliant TDL Reports POWER OF SIMPLICITY

7.3 Using the same Collection in more than one Report

When more than one Report requires different methods of the Objects of the same Collection,
then using the same collection with all the methods fetched in it reduces the performance.This
can be improved in the following ways:

Fetching the required methods locally at Report

In the following code snippet, Sample Report1 requires Opening Balance of a Ledger whereas
Sample Report2 requires Closing Balance. Instead of modifying the Collection to fetch both
Opening Balance and Closing Balance, the same is localized in respective Reports.

[Report : Sample Reportl]

Local : Collection : Ledger : Fetch : Opening Balance
[Report : Sample Report2]

Local : Collection : Ledger : Fetch : Closing Balance

Separate Collections for fetching different methods

In the following code snippet, two Collections are created for fetching the opening balance and
the closing balance. Later, the first Collection can be utilized in Sample Report1 and the second
one in Sample Report2.

[Collection : Fetch Opening Balance]
Type : Ledger
Fetch : Opening Balance
[Collection : Fetch Closing Balance]
Type : Ledger

Fetch : Closing Balance

194

Tty

POWER OF SIMPLICITY

General and Collection Enhancements

Introduction

In Tally.ERP 9, major changes have been provided by the platform to enhance the TDL
capabilities to help the programmer to develop and deploy solutions with ease. Major
improvements have taken place in terms of language usage standardisation and performance
improvements.

There have been breakthrough enhancements at Collection level to provide Remoting and
Advanced Reporting capabilities. Collection is now a complete Data Processing Artefact in TDL.

This chapter provides in depth knowledge of the various enhancements in attributes, modifiers,
method formula syntax and symbol prefixes. The foremost focus is towards the enhancements at
the collection level for providing the capabilities for aggregation, usage as tables, XML collection
and dynamic object creation support for HTTP-XML based information interchange.

1. Definition, Attribute and Modifier Enhancements

In Tally.ERP 9, new attributes and modifiers have been introduced to support the new capabilities.
The behaviour of some of the existing attributes and modifiers has also changed.

1.1 Attribute Enhancements
New Attributes
New attributes that have been introduced are explained in this section.

Field Attribute — Set By Condition

The attribute Set By Condition is similar to a conditional ‘Set’ at Field level. If multiple ‘Set By
Condition’ are mentioned under a Field, then the last satisfied Set By Condition will be executed.

Syntax
Set By Condition : <Condition> : <Value>
Where,
<Condition> is any logical formula.
<Value> is any string or a formula.
Example:
[Field : Sample SetbyCondition]

Set as : “Default Value”
SetbyCondition : ##Conditionl : "Set by Condition 1"

The Field Sample SetbyCondition will contain the value ‘Set by Condition1’ if the expression
Condition1 returns TRUE, else the Field will contain the value ‘Default Value’.

195

http://Remoteserver/TestXML.xml
http://Remoteserver/TestXML.xml
http://Remoteserver/TestXML.xml
http://Remoteserver/TestXML.xml
http://Remoteserver/TestXML.xml
http://Remoteserver/TestXML.xml
http://Remoteserver/TestXML.xml
http://Remoteserver/TestXML.xml
http://localhost/TestXML.xml
http://RemoteServer/TestXML.xml
http://localhost/XMLData.xml
http://localhost/test.php
http://localhost/test.php
http://localhost/test.php
http://localhost/XMLData.xml
http://localhost/XMLData.xml
http://Remoteserver/test.php
http://www.tallysolutions.com/
http://Remoteserver/TestXML.xml
http://Remoteserver/TestXML.xml
http://www.tally.co.in/
http://Remoteserver/test.php
http://Remoteserver/test.php
http://Remoteserver/TestXML.xml

Tty

General and Collection Enhancements POWER OF SIMPLICITY

Field Attribute — Tool Tip

As the name suggests, the value specified with this attribute is displayed when the mouse pointer
is placed on a particular field. This means that, in addition to the static information displayed by
‘Info’ or ‘Set As’ attributes, we can provide additional meaningful information using this attribute.

In other words, when the user hovers the mouse pointer over the Field, a small hover box appears
with supplementary information regarding the item being pointed over. As against attributes ‘Info’
or ‘Set As’, this attribute value is independent of the Field Width.

Syntax

Tool Tip : <Value>
Where,
<Value> can be a String or a Formula.
Example:

[Field : Led Name]
Storage : Name

Tool Tip : “Please Enter the Name of the Ledger”

Report Attribute — Full Screen
It helps to control the display of command window/calculator pane. It is a logical type of attribute.
Syntax

Full Screen : Yes/No

If it is set to YES, the command window will be hidden, providing extra space when the report is
displayed. The default value of this attribute is YES. In case of Sub-Report/AutoReport, if the
value of this attribute is not specified, the default value is NO.

Example:

[Report : My Report]
Full Screen : Yes

Part Attribute — Retain Focus

It indicates that the part should retain information about the line which is currently in focus, even if
the focus is moved to other part. This allows the part to make the same line as the current line
when it gets back the focus.

Syntax
Retain Focus : Yes/No
Example:

[Part : LedPart]

Retain Focus : Yes

196

http://Remoteserver/TestXML.xml

Tty

POWER OF SIMPLICITY General and Collection Enhancements

Part Attribute — Default Line

It is used to highlight the appropriate line which satisfies the given condition. All the methods of
the object associated with the line can be used while specifying the condition.

Syntax

Default Line : <Condition>
When the Report is invoked, the Line for which the condition is TRUE, is highlighted by default.
Example:

If the Line is repeated over the collection of Legers, then the following code will highlight the line
of Cash Ledger.

[Part : The Main Part]
Default Line : $Name = “Cash”

Collection Attribute — Sub Title

Along with the Table title, sub titles for the columns can also be given. The attribute ‘Sub Title’ has
been introduced in the ‘Collection’ definition for the same.

Syntax
Sub Title : <List of Comma Separated Strings>
Where,

<List of Comma Separated Strings> are Strings separated by comma, with respect to the
number columns. ‘Sub Title’ is a List type attribute.

Example:
[Collection : DebtorsLedTable]
Type : Ledger
Child Of : $SGroupSundryDebtors
Format : SName, 15
Format : $OpeningBalance, 10
Title : $SLocaleString : "Table Sub-Titles"
Sub Title : SLocaleString : "Name"
Sub Title : SLocaleString : "Op.Balance"

It displays a table with two columns. Column titles are also displayed, using attribute Sub Title.
Instead of using Sub Title attribute multiple times, a comma separated list can be given as follows:

Sub Title : $$LocaleString : "Name", SSLocaleString : "Op.Balance"

197

Tty

General and Collection Enhancements POWER OF SIMPLICITY

Behavioural Changes of Attributes
Enhancements have been done in the behaviour of the following attributes:

Attributes ‘Set As’ and ‘Info’

As of Release 2.x, the attributes ‘Set as’ and ‘Info’ were treated as the same attribute with aliases.
When ‘Info’ was used, it had a special Skip and Prompt privilege. If both were specified, the last
specification would override the previous specification and would be the effective specification.

Tally.ERP 9 onwards, this behaviour has been modified to treat both as individual attributes.
When both these attributes are specified in a field, ‘Info’ takes precedence and ‘Set as’ is ignored.

Attribute ‘Format’

When a collection is a union of collections, the ‘Format’ attribute in the collection behaves as a
place holder for the columns. It is mandatory to specify ‘Format’ attribute in individual collections,
when a collection is a union of collections.

Example:

[Collection : LedTable]
Collection : DebtorsLedTable, CreditorsLedTable
Format : A, 20
Format : B, 25

Here, A and B act as dummy identifiers, and the second parameter is width. The collections
DebtorsLedTable and CreditorsLedTable are defined as follows:

[Collection : DebtorsLedTable]

Type : Ledger

Child Of : SGroupSundryDebtors

Format : S$SName, 15 Format: S$StateName, 15
[Collection : CreditorsLedTable]

Type : Ledger

Child Of : SGroupSundryCreditors

Format : SName, 15

Format : $StateName, 15

It displays a table of two columns. The width of first column is 20 and of second column is 25.

Attribute ‘Sync’

The behaviour of the attribute ‘Sync’ of ‘Part’ definition is changed. The first line of next part is
selected, as the default of Sync attribute is now set to NO. If the Part further contains parts, then
the value of Sync attribute specified at Parent level overrides the value specified at child level.

198

Tty

POWER OF SIMPLICITY General and Collection Enhancements

Example:

[Part : Main Part]
Parts : SubPartl, SubPart 2
Sync : Yes
[Part : Sub Part 1]
Sync : No
[Part : Sub Part 2]
Sync : Yes
As a result of the default value of ‘Sync’ attribute being set to NO, in the above code snippet, the
Sync attribute finally has the value as YES.

Attribute ‘Child Of’ - to support Voucher Type

‘Child Of attribute is enhanced further to support Voucher Type. Now, a Collection of Vouchers of a
particular Voucher Type can be constructed. Prior to this release, the same could be achieved by
applying Filters to the Collection. But, the enhanced approach will improve the performance.
Further, the Collection attribute ‘Belongs To’ can be used in addition to ‘Child of’, to construct the
Collection of Vouchers of a particular pre-defined Voucher Type, including related user-defined
Voucher Types.

Syntax
[Collection : <Coll Name>]

Type: Vouchers : Voucher

Type Childof : <String Formula>

Belongs To : <Logical Value>
Where,
<Coll Name> is the name of the Collection.
<String Formula> can be a formula which results into the name of the Voucher Type
<Belongs To> is an optional attribute, which if used, takes <Logical Value>,i.e., YES or NO.

Example: 1
[Collection : Sales Vouchers]
Type : Voucher Type

Child of : SVchTypeSales

‘Sales Vouchers' is a collection of Vouchers, whose Voucher Type is the predefined voucher type
‘Sales’.

199

Tty

General and Collection Enhancements POWER OF SIMPLICITY
Example: 2
[Collection : Sales Vouchers]
Type : Voucher Type
Child of : $$VchTypeSales

Belongs To : Yes

‘Sales Vouchers’ is a Collection of Vouchers, whose Voucher Type is pre-defined voucher type
‘Sales’, or any other user defined Voucher Type whose “Type of Voucher’ is ‘Sales’.

1.2 Modifier Enhancements

In TDL, attribute modifiers are classified as Static/Load time or Dynamic/Run-Time modifiers. Use,
Add, Delete, Replace/Change are Static/Load Time modifiers. Option, Switch and Local are
RunTime modifiers. The sequence of evaluation is generalized across all the definitions in TDL.

Sequence of Attribute Evaluation:

1. Use

2. Normal Attributes

3. Delayed Static/Load Time modifier
4. Dynamic/Run-Time modifier

New Modifiers

Modifier — Switch

A new attribute modifier ‘Switch’ has been incorporated from TallyERP 9 onwards. This attribute
is similar to the ‘Option’ attribute, but reduces code complexity and improves the performance.

The modifier ‘Option’ compulsorily evaluates the conditions for all the options provided in the
description code, and applies all the option statements which satisfy the evaluation conditions.
This means that it is not easy to write the code where you just want one of the options to be
applied. You have to make sure that other options are not applied using a negative condition. The
new attribute modifier ‘Switch’ has been provided to support these types of scenarios, where
evaluation is carried out only up to the point where the first evaluation process has been cleared.

Apart from this, ‘Switch’ statements can be grouped using a label. Therefore, multiple switch
groups can be created and zero or one of the switch cases would be applied from each group.

Syntax
Switch : <Label> : <Definition Name> : <Condition>
Switch : <Label> : <Definition Name> : <Condition>

If multiple ‘Switch’ statements are mentioned within a single definition, then the evaluation will be
carried out up to the point where the first condition is satisfied for the given label.

Example: 1
[Field : Sample Switch]

Set as : "Default Value"

200

Tty

POWER OF SIMPLICITY General and Collection Enhancements

Switch : Casel : Sample Switchl : ##SampleSwitchl
Switch : Casel : Sample Switch2 : ##SampleSwitch?

Here, out of multiple switch statements having same label, zero or one statement is executed.
Example: 2
[Field : Sample Switch]

Set as : "Default Value"

;. If none of the condition is TRUE then Field will have Default Value
Switch : Casel : Sample Switchl : ##SampleSwitchl

Switch : Casel : Sample Switch2 : ##SampleSwitch?2
Switch : Case2 : Sample Switch3 : ##SampleSwitch3
Switch : Case2 : Sample Switch4 : ##SampleSwitch4

Here, multiple switch groups are created, and zero or one of the switch cases would be applied
from each such group or label.

Behavioral Changes for Attribute Modifiers

The behaviour of the following attribute modifiers has been enhanced.

Changed precedence of Use

Behaviour of the attribute ‘USE’, which is used to inherit the properties from other definitions, has
now changed. Irrespective of the order of specification of attributes within a definition, USE will be
evaluated first. In other words, the order in which USE is specified is immaterial, as in any case, it
will be evaluated first. If multiple USE attributes are specified in a single definition, they are
evaluated in the order of their occurrence.

Example:

[Field : Attr Usel]

Set as : "This shows the changed behavior of 'Use' attribute"
Style : Large Bold
Use : Name Field

The Field Attr Use1 uses existing Field Name Field. Since USE is having higher precedence
over other attributes, Field Attr Use? will inherit all the attributes of Name Field. But, the style
Large Bold at the Field Attr Use 1 will override the inherited Style within the Field Name Field.

Changed behaviour of Delayed Attribute Modifiers “Add/Delete/Replace”

Static/Load Time modifiers like Add, Delete and Replace can be called as Delayed Attribute
modifiers, as they are having least precedence among Delayed Static/Load Time modifiers.

Now these modifiers are generalized across all definitions. Earlier for definitions Report, Key,
Color, Style, Border and Variable, the delayed attributes were applied in their sequence of

201

Tty

General and Collection Enhancements POWER OF SIMPLICITY

appearance in the definition description. If more than one delayed attribute is used under any
definition, then the attributes will be applied as they appear. This has been done to bring
consistency across the definitions.

Example: 1

[Report : Test Report]

Form : Forml
Delete : Form
Form : Form2

The report Test Report won't have any Form, as the attribute ‘Delete’, which is evaluated last,
deletes all the existing forms.

Example: 2

[Report : Test Reportl]

Form : Forml
Delete : Form
Add : Form : Form2

As a result of this code snippet, the Report Test Report1 will have one Form Form2, since, on
deletion of all the Forms, Delayed attribute modifier Add is used to add a new Form Form?2.

Enhanced Syntax of Delayed Attribute “Local”

Delayed attribute modifier ‘Local’, which is used to locally modify the attributes of any child
definition, is now enhanced to accept nested Locals.

Syntax

Local : <DefinitionTypel> : <DefinitionNamel> [: <DefinitionType2> +

<Definition Name2> : ...] : <Attribute> : <Value>

Where,
<Definition Type> can be a Form, a Part, a Line or a Field.
<Definition name> is the name of the definition type.
<Attribute> is the attribute of the Definition of which, the value needs to be altered, and
<Value> is the value assigned to this attribute within the current Report or Form or Part or Line.
Example:

[Report : Custom Report]
Local : Line : TitleLine : Local : Field : AmtField :Set as : “SalesAmount”

The Field Amt Field is localized at the Report Custom Report, by using nested locals.

202

Tty

POWER OF SIMPLICITY General and Collection Enhancements

1.3 Behavioral change in System Definitions

System Definitions overriding without '#' are treated as warnings now, instead of errors. #, ! or *
modifications to [System : MenuKeys], [System : Form Keys], [System :Formula] and
[System:UDF] were shown as errors. They have now been converted to warnings.

In Tally.ERP 9, overriding System Formula/Variable, without prefixing a # have been treated as an
Error. The usage of #, * and ! prefix to System Definitions like Menu Keys, Form Keys and UDF
were not allowed and treated as errors.

Many existing Codes have stopped working due to this behavioral change. Hence, in order to
maintain backward compatibility, these have been enabled & treated as warnings and in some
cases ignored, so that existing TDL Codes continue to work, without any changes required for the
same. These warnings are thrown only by the compiler, during the compilation using TD9.

However, it is advisable to use # for existing System Formula alteration, and refrain from using #
for System Menu Keys, Form Keys and UDF Definition, or using ! for any system descriptions.

1.4 Partial Attribute Support

Prior to Tally.ERP 9, all descriptions supported partial search on their attribute words. For
example, ‘Set as’ could have been written as Set a, Set or Se, which would allow minimum number
of characters to be present to an extent where another attribute does not start with those
characters. This behaviour is now removed as it is not practical to use partial words. But, multiple
aliases are now supported to allow meaningful attribute names.

Example:
o ‘Set as’ can be written as ‘Set’
o ‘Float Bottom Lines’ at Part Definition can be written as ‘Float’
o “Top Part’ can be written as ‘Part’, ‘Parts’ or “Top Parts’

Since these aliases have been introduced, most of the existing TDL will work without any
changes. In case of Partial words/Non-meaningful words used in any TDL, Tally would throw an
error, which needs to be corrected in TDL.

1.5 Change in usage of 'BLANK' Keyword in Menu Items

To insert empty line between Menu ltems, BLANK keyword was used. Also ‘ltem’ Attribute without
any "Value" used to be considered as BLANK prior to Tally.ERP 9. For consistency in TDL coding,
the later is now disallowed. Only BLANK keyword can now be used to indicate empty Menu Item.

2. Enhanced Special Symbols

In Tally.ERP 9, some new symbols have been introduced and the behaviour of the definition
modifier ‘# has been enhanced.

2.1 Multi — line commenting in TDL source code using /* and */

Multi-line commenting is a new feature in this release, which renders the TDL code more
user-friendly and easy to maintain. A simple Multi-line comment would look like:

/*

<Comment Line 1>

<Comment Line 2> */

203

Tty

General and Collection Enhancements POWER OF SIMPLICITY

2.2 Extension of modifying definitions using #

Scope of modifying definitions using # is extended to System Formula definition, that is, to alter
the value of the existing system formula. It helps to improve the performance with optimized
formulae.

Example:

[#System : Formulal]
NameWidth : 40
MaxNameWidth : 60

Here, the values specified to Formulae NameWidth and MaxNameWidth in DefTDL, are changed.

2.3 “ (Reinitialize) Definition modifier

Wk 3

The definition modifier overwrites the existing content of definition. The modifier is very
useful when there is a need to completely replace the existing definition content with a new code.

Syntax
[*<Definition Type> : <Definition Name>]
Example:

[Field : Sample ReInitialize]
Info : "Original Value"
Style : Large Bold
Color : Blue
[*Field : Sample RelInitialize]
Info : "ReInitialized-All the attribute values deleted +
& newlydefined"

Lines : 1

3. Method Formula Syntax with Relative Object Specification

‘$’ operator has been enhanced with new capabilities. It allows direct access to any object
method, including its sub-collections to any level, with a dotted notation framework. Using this
new capability, there is no need to repeat a line over a sub-collection to access it. Values from any
object, anywhere, can be accessed without making the object as the current object in context.
Suffixing of PrimaryObjType : ObjNameFormula is still supported for backward compatibility. In
cases where both are specified, the enhanced new primary object specification will be
considered.

The earlier syntax to access a Method was:
$MethodName OR $MethodName : PrimaryObjType : ObjNameFormula

204

Tty

POWER OF SIMPLICITY General and Collection Enhancements

The enhanced method formula Syntax has been introduced to support access out of the scope of
the Primary Object and to access Sub object at any level using (.) dotted notation with index and
condition support.

The new enhanced syntax is:

$<PrimaryObjectSpec>.<SubObjectPathSpec>.MethodName
Where,

<PrimaryObjectSpec> can be (<Primary Object Type Keyword>, <Primary Object Identifier
Formula>)

<SubObjectPathSpec> is given as CollectionName [<Index Formula>, [<Condition>]]
<MethodName> refers to the name of the method in the specified path.

<Index Formula> should return a number which acts as a position specifier in the Collection of
Objects satisfying the given <condition>.

Example:
Following are evaluated assuming Voucher as the current object

1. To get the Ledger Name of the first Ledger Entry from the current Voucher,
Set as : S$LedgerEntries[1l] .LedgerName

2. To get the amount of the first Ledger Entry on the Ledger ‘Sales’ from current voucher,
Set as : $LedgerEntries|[1l, @LedgerCondition] .Amount

LedgerCondition : $LedgerName = “Sales”

3. To get the first Bill Name of the first Ledger entry on the Party Ledger from the current
voucher,

Set As : SLedgerEntries[1l, @@LedgerCondition]+
.BillAllocations[1l] .Name
LedgerCondition : S$LedgerName = @@InvPartyName

4. To get the OpeningBalance of the first Bill for the Party, Acme Corp,

Set As : $(Ledger,@@PartyLedger) .BillAllocations[1]+
.OpeningBalance
PartyLedger : “Acme Corp”

Primary Object specification is optional. If not specified, the current object will be considered as
primary object. Sub-Collection specification is optional. If not specified, methods from the current
or specified primary object will be available. Index specifies the position of the Sub-Object to be
picked up from the Sub-Collection. Condition is the filter which is checked on the objects of the
specified Sub-Collection.

<Primary Object Identifier Formula>, <Index Formula> and Condition can be a value or
formula.<Index Formula> can be any formula evaluating to a number. Positive Number indicates
a forward search and negative number indicates backward search. This can also be keyword
First or Last which is equivalent to specifying 1 or -1 respectively.

205

Tty

General and Collection Enhancements POWER OF SIMPLICITY

If both Index and Condition are specified, the index is applicable on the Object(s) which satisfy the
condition, so one gets the nth Object which clears the condition. Let’s say for example, if the Index
specified is 2 and Condition is Name = “Sales”, then the second object which matches the name
Sales will be picked up.

Primary Object Path Specification can either be relative or absolute. Relative Path is referred
using empty parenthesis () or Dotted path to refer to the Parent object relatively. SINGLE DOT
denotes the current object, DOUBLE DOT the Parent Object, TRIPLE DOT the Grand Parent
Object, and so on, within an Internal Object. Absolute Path refers to the path in which the Primary
Object is explicitly specified.
To access the Methods of Primary Object using Relative Path following syntax is used:

$ () .MethodName or $..MethodName or $.. MethodName
Example:

Being in the context of ‘LedgerEntries’ Object within the ‘Voucher’ Object, the following has to be
written to access the Date from its Parent Object, which is the ‘Voucher’ Object.

$..Date

To access the Methods of Primary Object using Absolute Path:

$ (Ledger, “Cash”) .OpeningBalance

4. Enhancements - Object Association

In TDL, any Interface object exists in the context of any data object. Every Interface object needs
to be associated with some data object. In the absence of any explicit object association, Interface
object will get associated with ‘Anonymous’ object. TDL programmer can explicitly associate
Interface objects like Report, Part, Line and Field with a data object. In Tally.ERP 9, Object
association has become more natural and simpler.

4.1 Report Level Object Association
A Report normally will be associated with a data object, which it gets from the previous Report, or
will be associated with anonymous object.

From Tally.ERP 9 onwards, the syntax for association has been enhanced to override the default
association as well. The Report attribute ‘Object’ has been enhanced to take an additional
optional value ‘ObjectldentifierFormula’.

Syntax

Object : <ObjectType> [: <ObjectIdentifierFormula>]
Where,
<ObjectType> is the Type of any Primary Object, and

<ObjectldentifierFormula> is any formula which evaluates to the name of a Primary Object. It is
optional.

206

Tty

POWER OF SIMPLICITY General and Collection Enhancements

Example: Prior to Tally.ERP 9

[#Form : Sales Color]

Delete : Print

Add : Print : New Sales Format
[Report : New Sales Format]

Object : Voucher

Default ‘Sales color’ Form is modified to have new print format ‘New Sales Format'. This Report
gets the “Voucher’ object from the previous Report.

Example: In Tally.ERP 9
[Report : Sample Report]

Object : Ledger : “Cash”

Ledger ‘Cash’ is associated to the Report ‘Sample Report’. Now, the components of ‘Sample
Report’, by default, inherit this ledger object association.
4.2 Part Level Object Association
By default, Part inherits the Object from Report/Part/Line. This can be overridden in two ways:
Using ‘Object’ attribute specification in ‘Part’ definition.
Syntax: Prior to Tally.ERP 9

Object : <SupplierCollection> : <SeekTypeKeyword> [:<SeekCondition>]
Where,
<SupplierCollection> is the name of the Collection of secondary Objects.
<SeekTypeKeyword> can be First or Last, which denotes the position index, and
<SeekCondition> is a filter condition to the supplier collection. It is optional.

Example: Part in the context of Voucher Object

[Part : Sample Part]
Line : Sample Line

Object : InventoryEntries:First:@@StkNameFilter

Scroll : Vertical
[System : Formula]
StkNameFilter : $StockItemName = "Tally Developer”

The first inventory entry which has the stock Item “Tally Developer” is associated with the Part
‘Sample Part’.

207

Tty

General and Collection Enhancements POWER OF SIMPLICITY

Using ‘Object Ex’ attribute specification in ‘Part’ definition

From Tally.ERP 9 onwards, data object can be associated to Part by using the new attribute
‘Object Ex’. Now, even Primary Object can also be associated to a Part, which was not possible in
the earlier Part level data object association. Also, data Object associated to some other Interface
Object can also be associated to a Part. This aspect will be elaborated in the section “Object
Access